ﻻ يوجد ملخص باللغة العربية
Recently, some approaches are proposed to harness deep convolutional networks to facilitate superpixel segmentation. The common practice is to first evenly divide the image into a pre-defined number of grids and then learn to associate each pixel with its surrounding grids. However, simply applying a series of convolution operations with limited receptive fields can only implicitly perceive the relations between the pixel and its surrounding grids. Consequently, existing methods often fail to provide an effective context when inferring the association map. To remedy this issue, we propose a novel textbf{A}ssociation textbf{I}mplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids. The proposed AI module directly implants the features of grid cells to the surrounding of its corresponding central pixel, and conducts convolution on the padded window to adaptively transfer knowledge between them. With such an implantation operation, the network could explicitly harvest the pixel-grid level context, which is more in line with the target of superpixel segmentation comparing to the pixel-wise relation. Furthermore, to pursue better boundary precision, we design a boundary-perceiving loss to help the network discriminate the pixels around boundaries in hidden feature level, which could benefit the subsequent inferring modules to accurately identify more boundary pixels. Extensive experiments on BSDS500 and NYUv2 datasets show that our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
Image segmentation, one of the most critical vision tasks, has been studied for many years. Most of the early algorithms are unsupervised methods, which use hand-crafted features to divide the image into many regions. Recently, owing to the great suc
Along with predictive performance and runtime speed, reliability is a key requirement for real-world semantic segmentation. Reliability encompasses robustness, predictive uncertainty and reduced bias. To improve reliability, we introduce Superpixel-m
In this work, we evaluate the use of superpixel pooling layers in deep network architectures for semantic segmentation. Superpixel pooling is a flexible and efficient replacement for other pooling strategies that incorporates spatial prior informatio
Learning segmentation from noisy labels is an important task for medical image analysis due to the difficulty in acquiring highquality annotations. Most existing methods neglect the pixel correlation and structural prior in segmentation, often produc
Semantic segmentation, like other fields of computer vision, has seen a remarkable performance advance by the use of deep convolution neural networks. However, considering that neighboring pixels are heavily dependent on each other, both learning and