ﻻ يوجد ملخص باللغة العربية
In this work, we evaluate the use of superpixel pooling layers in deep network architectures for semantic segmentation. Superpixel pooling is a flexible and efficient replacement for other pooling strategies that incorporates spatial prior information. We propose a simple and efficient GPU-implementation of the layer and explore several designs for the integration of the layer into existing network architectures. We provide experimental results on the IBSR and Cityscapes dataset, demonstrating that superpixel pooling can be leveraged to consistently increase network accuracy with minimal computational overhead. Source code is available at https://github.com/bermanmaxim/superpixPool
Along with predictive performance and runtime speed, reliability is a key requirement for real-world semantic segmentation. Reliability encompasses robustness, predictive uncertainty and reduced bias. To improve reliability, we introduce Superpixel-m
Image segmentation, one of the most critical vision tasks, has been studied for many years. Most of the early algorithms are unsupervised methods, which use hand-crafted features to divide the image into many regions. Recently, owing to the great suc
To better retain the deep features of an image and solve the sparsity problem of the end-to-end segmentation model, we propose a new deep convolutional network model for medical image pixel segmentation, called MC-Net. The core of this network model
Although deep learning greatly improves the performance of semantic segmentation, its success mainly lies in object central areas without accurate edges. As superpixels are a popular and effective auxiliary to preserve object edges, in this paper, we
Semantic segmentation, like other fields of computer vision, has seen a remarkable performance advance by the use of deep convolution neural networks. However, considering that neighboring pixels are heavily dependent on each other, both learning and