ﻻ يوجد ملخص باللغة العربية
Deep near-infrared $J$- and $K$-band photometry of three Local Group dwarf spheroidal galaxies: Fornax, Carina, and Sculptor, is made available for the community. Until now, these data have only been used by the Araucaria Project to determine distances using the tip of the red giant and RR Lyrae stars. Now, we present the entire data collection in a form of a database, consisting of accurate $J$- and $K$-band magnitudes, sky coordinates, ellipticity measurements, and timestamps of observations, complemented by stars loci in their reference images. Depth of our photometry reaches about 22 mag at 5$sigma$ level, and is comparable to NIR surveys, like the UKIRT Infrared Deep Sky Survey (UKIDSS) or the VISTA Hemisphere Survey (VHS). Small overlap with VHS and no overlap with UKIDSS makes our database a unique source of quality photometry.
We present distance determinations for two Local Group dwarf spheroidal galaxies, Carina and Fornax, based on the near-infrared magnitudes of the tip of the red giant branch (TRGB). For Carina we derive true distance moduli of 20.09 and 20.13 mag in
Following the earlier discovery of classical Cepheid variables in the Sculptor Group spiral galaxy NGC 7793 from an optical wide-field imaging survey, we have performed deep near-infrared $J$- and $K$-band follow-up photometry of a subsample of these
The existence of blue straggler stars (BSSs) in dwarf spheroidal galaxies (dSphs) is still an open question. In fact, many BSS candidates have been observed in the Local Group dSphs, but it is unclear whether they are real BSSs or young stars. Sheddi
Context: The Asymptotic Giant Branch (AGB) phase is characterised by substantial mass loss that is accompanied by the formation of dust. In extreme cases this will make the star no longer visible in the optical. For a better understanding of AGB evol
We have obtained single-phase near-infrared (NIR) magnitudes in the J- and K-bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for