ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared spectroscopy of AGB star candidates in Fornax, Sculptor and NGC 6822

306   0   0.0 ( 0 )
 نشر من قبل Martin Groenewegen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: The Asymptotic Giant Branch (AGB) phase is characterised by substantial mass loss that is accompanied by the formation of dust. In extreme cases this will make the star no longer visible in the optical. For a better understanding of AGB evolution it is important to identify and characterise these very red AGB stars. Aims: The first aim of this article is to improve the census of red AGB stars in three Local Group galaxies, based on near-IR spectroscopic observations of new candidates with red 2MASS (J-K) colours. The opportunity is taken to compare the near-IR spectra with those of Milky Way stars. Methods: We used ISAAC on the ESO VLT to take J and H-band spectra of 36 targets in Fornax, Sculptor and NGC 6822. Results: Twelve new C-stars are found in Fornax, and one is confirmed in Sculptor. All C-stars have (J-K) > 1.6, and are brighter than -3.55 in bolometric magnitude. Ten new oxygen-rich late-type giant stars are identified in Fornax, but none is extremely red or very luminous. Five luminous O-rich AGB stars are identified in NGC 6822, of which 3 show water absorption, indicative of spectral type M. Again, none is as red as Milky Way OH/IR stars, but in this galaxy the list of candidate AGB stars is biased against very red objects. In some C-stars with (J-K)>2 an extremely strong 1.53 $mu$m absorption band is found. These stars are probably all Mira variables and the feature is related to the low temperature, high density chemistry that is a first step towards dust formation and mass loss.

قيم البحث

اقرأ أيضاً

Deep near-infrared $J$- and $K$-band photometry of three Local Group dwarf spheroidal galaxies: Fornax, Carina, and Sculptor, is made available for the community. Until now, these data have only been used by the Araucaria Project to determine distanc es using the tip of the red giant and RR Lyrae stars. Now, we present the entire data collection in a form of a database, consisting of accurate $J$- and $K$-band magnitudes, sky coordinates, ellipticity measurements, and timestamps of observations, complemented by stars loci in their reference images. Depth of our photometry reaches about 22 mag at 5$sigma$ level, and is comparable to NIR surveys, like the UKIRT Infrared Deep Sky Survey (UKIDSS) or the VISTA Hemisphere Survey (VHS). Small overlap with VHS and no overlap with UKIDSS makes our database a unique source of quality photometry.
The characterisation of the stellar population toward young high-mass star-forming regions allows to constrain fundamental cluster properties like distance and age. These are essential when using high-mass clusters as probes to conduct Galactic studi es. NGC 7538 is a star-forming region with an embedded stellar population only unearthed in the near-infrared. We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with sub-arcsecond JHKs photometry of the region using the imaging mode of the same instrument. We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the HII region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7+-0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass ~1.7x10^3 Msun for the older population.
We present high resolution images of NGC 2071-IR in the $J$, $H$, and $K$ bands and in the emission at 2.12 $mu$m of the v=$1-0$ $S$(1) line of molecular hydrogen. We also present moderate resolution K-band spectra of two young stellar objects, IRS 1 and IRS 3, within NGC 2071-IR, that are candidates sources of one or more of the outflows observed in the region. Two of the eight originally identified infrared point sources in NGC 2071-IR are binaries, and we identifiy two new sources, one coincident with the radio source VLA-1 and highly reddened. The H2 $Q$(3)/$S$(1) line intensity ratios at IRS 1 and IRS 3 yield high and very high extinctions, respectively, to them, as is implied by their near-infrared colors and K-band continuum slopes. The spectra also reveal the presence of hot, dense circumstellar molecular gas in each, suggesting that both are strong candidates for having energetic molecular outflows. We agree with a previous suggestion that IRS 1 is the likely source of an E-W-oriented outflow and conclude that this outflow is probably largely out of the plane of the sky. We also conclude that if IRS 3 is the source of the large scale NE-SW outflow, as has been previously suggested, its jet/wind must precess in order to explain the angular width of that outflow. We discuss the natures of the point sources and their probable contributions, if any, to the complex morphology of the H2 line emission.
(Abridged) The chemical behaviour of an ample sample of PNe in NGC6822 is analyzed. Spectrophotometric data of 11 PNe and two H II regions were obtained with the OSIRIS spectrograph attached to the Gran Telescopio Canarias. Data for other 13 PNe and three H II regions were retrieved from the literature. Physical conditions and chemical abundances of O, N, Ne, Ar and S were derived for 19 PNe and 4 H II regions. Abundances in the PNe sample are widely distributed showing 12+log(O/H) from 7.4 to 8.2 and 12+log(Ar/H) from 4.97 to 5.80. Two groups of PNe can be differentiated: one old, with low metallicity (12+log(O/H)<8.0 and 12+log(Ar/H)<5.7) and another younger with metallicities similar to the values of H II regions. The old objects are distributed in a larger volume than the young ones. An important fraction of PNe (>30%) was found to be highly N-rich (Type I PNe). Such PNe occur at any metallicity. In addition, about 60% of the sample presents high ionization (He++/He >= 0.1), possessing a central star with effective temperature larger than 10^6 K. Possible biases in the sample are discussed. From comparison with stellar evolution models by A. Karakass group of the observed N/O abundance ratios, our PNe should have had initial masses lower than 4 M_sun, although if the comparison is made with Ne vs. O abundances, the initial masses should have been lower than 2 M_sun. It appears that these models of stars of 2-3 M_sun are producing too much 22Ne in the stellar surface at the end of the AGB. On the other hand, the comparison with another set of stellar evolution models by P. Venturas group with a different treatment of convection and on the assumptions concerning the overshoot of the convective core during the core H-burning phase, provided a reasonable agreement between N/O and Ne/H observed and predicted ratios if initial masses of more massive stars are of about 4 M_sun.
We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at 8500 Angstroms was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line of sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be v_helio = (52.8 +/- 2.2) km/s with dispersion rms = 24.1 km/s, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was [Fe/H] = (-0.84 +/- 0.04) with dispersion rms = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former are found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars is higher than that of the metal-rich stars; combined with the age-metallicity relation this indicates that older populations have either been dynamically heated or were born in a less disclike distribution. The low ratio (v_rot/v_rms) suggests that within the inner 10, NGC 6822s stars are dynamically decoupled from the HI gas, possibly in a thick disc or spheroid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا