ﻻ يوجد ملخص باللغة العربية
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these compounds are member of the Ce$_n$T$_m$In$_{3n+2m}$ (n = 1, 2,..; m = 1, 2,.. and T = transition metal) to which the extensively studied heavy fermion superconductor CeCoIn$_5$ belongs. Single crystals have been grown by In self-flux method. Differential scanning calorimetry studies were used to derive optimal growth conditions. Evidently, the maximum growth conditions for these materials should not exceed 750 $^{circ}$C. Single crystal x-ray data show that Ce$_2$TIn$_8$ compounds crystallize in the tetragonal Ho$_2$CoGa$_8$ phase (space group P4/mmm) with lattice parameters a =4.6898(3) $AA$ and c =12.1490(8) $AA$ for the Pt-based one (Pd: a = 4.6881(4) $AA$ and c = 12.2031(8) AA). The Ce$_3$TIn$_{11}$ compounds adopt the Ce$_3$PdIn$_{11}$ structure with a = 4.6874(4) $AA$ and c = 16.8422(12) $AA$ for the Pt-based one (Pd: a = 4.6896 $AA$ and c = 16.891 AA). Specific heat experiments on Ce$_3$PtIn$_{11}$ and Ce$_3$PdIn$_{11}$ have revealed that both compounds undergo two successive magnetic transitions at T$_1$ ~ 2.2 K followed by T$_N$ ~ 2.0 K and T$_1$ ~ 1.7 K and T$_N$ ~ 1.5 K, respectively. Additionally, both compounds exhibit enhanced Sommerfeld coefficients yielding {gamma}$_{Pt}$ = 0.300 J/mol K$^2$ Ce ({gamma}$_{Pd}$ = 0.290 J/mol K$^2$ Ce), hence qualifying them as heavy fermion materials.
We report low-temperature specific heat measurements in magnetic fields up to 12 T applied parallel and perpendicular to the tetragonal c-axis of the heavy fermion superconductor Ce$_2$PdIn$_8$. In contrast to its quasi-two-dimensional (2D) relative
Ce$_{2}$PtIn$_{8}$ is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn$_{5}$. Here, we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce$_{2}$PtIn$_
The evolution of magnetism and superconductivity in Ce$_2$Rh$_{1-x}$Pd$_x$In$_8$ solid solutions has been studied within the entire concentration range by means of thermodynamic and magnetic measurements at ambient pressure and at temperatures betwee
We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$, which is believed to be close to a quantum
Neutron scattering experiments have been performed on the ternary rare-earth diborocarbide Ce$^{11}$B$_2$C$_2$. The powder diffraction experiment confirms formation of a long-range magnetic order at $T_{rm N} = 7.3$ K, where a sinusoidally modulated