ﻻ يوجد ملخص باللغة العربية
Modern quantum technologies rely crucially on techniques to mitigate quantum decoherence; these techniques can be either passive, achieved for example via materials engineering, or active, typically achieved via pulsed monochromatic driving fields applied to the qubit. Using a solid-state defect spin coupled to a microwave-driven spin bath, we experimentally demonstrate a decoherence mitigation method based on spectral engineering of the environmental noise with a polychromatic drive waveform, and show that it outperforms monochromatic techniques. Results are in agreement with quantitative modeling, and open the path to active decoherence protection using custom-designed waveforms applied to the environment rather than the qubit.
Decoherence, resulting from unwanted interaction between a qubit and its environment, poses a serious challenge towards the development of quantum technologies. Recently, researchers have started analysing how real-time Hamiltonian learning approache
Due to its superior coherent and optical properties at room temperature, the nitrogen-vacancy (N-V ) center in diamond has become a promising quantum probe for nanoscale quantum sensing. However, the application of N-V containing nanodiamonds to quan
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferrom
A controlled quantum system can alter its environment by feedback, leading to reduced-entropy states of the environment and to improved system coherence. Here, using a quantum dot electron spin as control and probe, we prepare the quantum dot nuclei
The problem of combating de-coherence by weak measurements has already been studied for the amplitude damping channel and for specific input states. We generalize this to a large four-parameter family of qubit channels and for the average fidelity ov