ﻻ يوجد ملخص باللغة العربية
This monograph covers some recent advances on a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, momentum and nested optimization schemes, which coincide in the quadratic case to form the Chebyshev method whose complexity is analyzed using Chebyshev polynomials. We discuss momentum methods in detail, starting with the seminal work of Nesterov (1983) and structure convergence proofs using a few master templates, such as that of emph{optimized gradient methods} which have the key benefit of showing how momentum methods maximize convergence rates. We further cover proximal acceleration techniques, at the heart of the emph{Catalyst} and emph{Accelerated Hybrid Proximal Extragradient} frameworks, using similar algorithmic patterns. Common acceleration techniques directly rely on the knowledge of some regularity parameters of the problem at hand, and we conclude by discussing emph{restart} schemes, a set of simple techniques to reach nearly optimal convergence rates while adapting to unobserved regularity parameters.
Structured problems arise in many applications. To solve these problems, it is important to leverage the structure information. This paper focuses on convex problems with a finite-sum compositional structure. Finite-sum problems appear as the sample
We study robustness properties of some iterative gradient-based methods for strongly convex functions, as well as for the larger class of functions with sector-bounded gradients, under a relative error model. Proofs of the corresponding convergence r
First-order operator splitting methods are ubiquitous among many fields through science and engineering, such as inverse problems, signal/image processing, statistics, data science and machine learning, to name a few. In this paper, we study a geomet
The optimized gradient method (OGM) provides a factor-$sqrt{2}$ speedup upon Nesterovs celebrated accelerated gradient method in the convex (but non-strongly convex) setup. However, this improved acceleration mechanism has not been well understood; p
The aim of this paper is to discuss some advanced aspects of image reconstruction in single-pixel cameras, focusing in particular on detectors in the THz regime. We discuss the reconstruction problem from a computational imaging perspective and provi