ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks have achieved unprecedented success in image classification, recognition, or detection applications. However, their large-scale deployment in embedded devices is still limited by the huge computational requirements, i.e., millions of MAC operations per layer. In this article, MinConvNets where the multiplications in the forward propagation are approximated by minimum comparator operations are introduced. Hardware implementation of minimum operation is much simpler than multipliers. Firstly, a methodology to find approximate operations based on statistical correlation is presented. We show that it is possible to replace multipliers by minimum operations in the forward propagation under certain constraints, i.e. given similar mean and variances of the feature and the weight vectors. A modified training method which guarantees the above constraints is proposed. And it is shown that equivalent precision can be achieved during inference with MinConvNets by using transfer learning from well trained exact CNNs.
The high computation, memory, and power budgets of inferring convolutional neural networks (CNNs) are major bottlenecks of model deployment to edge computing platforms, e.g., mobile devices and IoT. Moreover, training CNNs is time and energy-intensiv
We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time and when computing the parameters gradient at train-time. We conduct two sets of experiments, each based on a different
Deep neural networks currently demonstrate state-of-the-art performance in several domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly
Deep neural networks are the state-of-the-art methods for many real-world tasks, such as computer vision, natural language processing and speech recognition. For all its popularity, deep neural networks are also criticized for consuming a lot of memo
This paper analyzes the effects of approximate multiplication when performing inferences on deep convolutional neural networks (CNNs). The approximate multiplication can reduce the cost of the underlying circuits so that CNN inferences can be perform