ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting Web Images for Fine-Grained Visual Recognition by Eliminating Noisy Samples and Utilizing Hard Ones

129   0   0.0 ( 0 )
 نشر من قبل Yazhou Yao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Labeling objects at a subordinate level typically requires expert knowledge, which is not always available when using random annotators. As such, learning directly from web images for fine-grained recognition has attracted broad attention. However, the presence of label noise and hard examples in web images are two obstacles for training robust fine-grained recognition models. Therefore, in this paper, we propose a novel approach for removing irrelevant samples from real-world web images during training, while employing useful hard examples to update the network. Thus, our approach can alleviate the harmful effects of irrelevant noisy web images and hard examples to achieve better performance. Extensive experiments on three commonly used fine-grained datasets demonstrate that our approach is far superior to current state-of-the-art web-supervised methods.



قيم البحث

اقرأ أيضاً

Object categories inherently form a hierarchy with different levels of concept abstraction, especially for fine-grained categories. For example, birds (Aves) can be categorized according to a four-level hierarchy of order, family, genus, and species. This hierarchy encodes rich correlations among various categories across different levels, which can effectively regularize the semantic space and thus make prediction less ambiguous. However, previous studies of fine-grained image recognition primarily focus on categories of one certain level and usually overlook this correlation information. In this work, we investigate simultaneously predicting categories of different levels in the hierarchy and integrating this structured correlation information into the deep neural network by developing a novel Hierarchical Semantic Embedding (HSE) framework. Specifically, the HSE framework sequentially predicts the category score vector of each level in the hierarchy, from highest to lowest. At each level, it incorporates the predicted score vector of the higher level as prior knowledge to learn finer-grained feature representation. During training, the predicted score vector of the higher level is also employed to regularize label prediction by using it as soft targets of corresponding sub-categories. To evaluate the proposed framework, we organize the 200 bird species of the Caltech-UCSD birds dataset with the four-level category hierarchy and construct a large-scale butterfly dataset that also covers four level categories. Extensive experiments on these two and the newly-released VegFru datasets demonstrate the superiority of our HSE framework over the baseline methods and existing competitors.
Training deep learning based video classifiers for action recognition requires a large amount of labeled videos. The labeling process is labor-intensive and time-consuming. On the other hand, large amount of weakly-labeled images are uploaded to the Internet by users everyday. To harness the rich and highly diverse set of Web images, a scalable approach is to crawl these images to train deep learning based classifier, such as Convolutional Neural Networks (CNN). However, due to the domain shift problem, the performance of Web images trained deep classifiers tend to degrade when directly deployed to videos. One way to address this problem is to fine-tune the trained models on videos, but sufficient amount of annotated videos are still required. In this work, we propose a novel approach to transfer knowledge from image domain to video domain. The proposed method can adapt to the target domain (i.e. video data) with limited amount of training data. Our method maps the video frames into a low-dimensional feature space using the class-discriminative spatial attention map for CNNs. We design a novel Siamese EnergyNet structure to learn energy functions on the attention maps by jointly optimizing two loss functions, such that the attention map corresponding to a ground truth concept would have higher energy. We conduct extensive experiments on two challenging video recognition datasets (i.e. TVHI and UCF101), and demonstrate the efficacy of our proposed method.
Current approaches for fine-grained recognition do the following: First, recruit experts to annotate a dataset of images, optionally also collecting more structured data in the form of part annotations and bounding boxes. Second, train a model utiliz ing this data. Toward the goal of solving fine-grained recognition, we introduce an alternative approach, leveraging free, noisy data from the web and simple, generic methods of recognition. This approach has benefits in both performance and scalability. We demonstrate its efficacy on four fine-grained datasets, greatly exceeding existing state of the art without the manual collection of even a single label, and furthermore show first results at scaling to more than 10,000 fine-grained categories. Quantitatively, we achieve top-1 accuracies of 92.3% on CUB-200-2011, 85.4% on Birdsnap, 93.4% on FGVC-Aircraft, and 80.8% on Stanford Dogs without using their annotated training sets. We compare our approach to an active learning approach for expanding fine-grained datasets.
Existing image-to-image transformation approaches primarily focus on synthesizing visually pleasing data. Generating images with correct identity labels is challenging yet much less explored. It is even more challenging to deal with image transformat ion tasks with large deformation in poses, viewpoints, or scales while preserving the identity, such as face rotation and object viewpoint morphing. In this paper, we aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image, which can thereby benefit the subsequent fine-grained image recognition and few-shot learning tasks. The generated images, transformed with large geometric deformation, do not necessarily need to be of high visual quality but are required to maintain as much identity information as possible. To this end, we adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image. In order to preserve the fine-grained contextual details of the input image during the deformable transformation, a constrained nonalignment connection method is proposed to construct learnable highways between intermediate convolution blocks in the generator. Moreover, an adaptive identity modulation mechanism is proposed to transfer the identity information into the output image effectively. Extensive experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models, and as a result significantly boosts the visual recognition performance in fine-grained few-shot learning.
Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation technique s, inter-class similarity may also affect feature learning and reduce classification performance. In this work, we address this problem using a novel optimization procedure for the end-to-end neural network training on FGVC tasks. Our procedure, called Pairwise Confusion (PC) reduces overfitting by intentionally {introducing confusion} in the activations. With PC regularization, we obtain state-of-the-art performance on six of the most widely-used FGVC datasets and demonstrate improved localization ability. {PC} is easy to implement, does not need excessive hyperparameter tuning during training, and does not add significant overhead during test time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا