ﻻ يوجد ملخص باللغة العربية
The study of topological band structures have sparked prominent research interest the past decade, culminating in the recent formulation of rather prolific classification schemes that encapsulate a large fraction of phases and features. Within this context we recently reported on a class of unexplored topological structures that thrive on the concept of {it sub-dimensional topology}. Although such phases have trivial indicators and band representations when evaluated over the complete Brillouin zone, they have stable or fragile topologies within sub-dimensional spaces, such as planes or lines. This perspective does not just refine classification pursuits, but can result in observable features in the full dimensional sense. In three spatial dimensions (3D), for example, sub-dimensional topologies can be characterized by non-trivial planes, having general topological invariants, that are compensated by Weyl nodes away from these planes. As a result, such phases have 3D stable characteristics such as Weyl nodes, Fermi arcs and edge states that can be systematically predicted by sub-dimensional analysis. Within this work we further elaborate on these concepts. We present refined representation counting schemes and address distinctive bulk-boundary effects, that include momentum depended (higher order) edge states that have a signature dependence on the perpendicular momentum. As such, we hope that these insights might spur on new activities to further deepen the understanding of these unexplored phases.
We report intertwined Weyl phases, which come from superposing topological phases by crystalline symmetry. In the intertwined Weyl phases, an unconventional Weyl phase where Weyl points possess a higher charge (monopole charge>1) due to rotation symm
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs havin
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related