ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass sensing for the advanced fabrication of nanomechanical resonators

139   0   0.0 ( 0 )
 نشر من قبل Gernot Gruber
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Gruber




اسأل ChatGPT حول البحث

We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users, since it can be operated in existing commercial FEBID systems without making any modification. The presented method allows to engineer hybrid nanomechanical resonators with precisely tailored functionality. It also appears as a new tool for studying growth dynamics of ultra-thin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods.

قيم البحث

اقرأ أيضاً

Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an app roach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 $mu$m) in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF$_6$. We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1 $mu$m over $approx ,$200x200 $mu$m$^2$). Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF$_6$-based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy and quantum control of mechanical oscillators via opto- and electromechanics. The mechanical quality factor ($Q$) of these systems determines the thermomechanical force noise and the thermal decoherence rate of mechanical quantum states. While the dissipation rate is typically set by the bulk acoustic properties of the material, by exploiting dissipation dilution, mechanical $Q$ can be engineered through geometry and increased by many orders of magnitude. Recently, soft clamping in combination with strain engineering has enabled room temperature quality factors approaching one billion ($10^9$) in millimeter-scale resonators. Here we demonstrate a new approach to soft clamping which exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices. In contrast to previous approaches, which rely on cascaded elements to achieve soft clamping, perimeter modes are soft clamped due to symmetry and the boundary conditions at the polygon vertices. Perimeter modes reach $Q$ of 3.6 billion at room temperature while spanning only two acoustic wavelengths---a 4-fold improvement over the state-of-the-art mechanical $Q$ with 10-fold smaller devices. The small size of our devices makes them well-suited for near-field integration with microcavities for quantum optomechanical experiments. Moreover, their compactness allows the realization of phononic lattices. We demonstrate a one-dimensional Su-Schrieffer-Heeger chain of high-$Q$ perimeter modes coupled via nearest-neighbour interaction and characterize the localized edge modes.
Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion could be obtained by also looking at modal r esponses at frequencies in between resonances. A common way to do this is to force a mechanical object into oscillations and study its off-resonance behaviour. In this paper, we present visualisation of the modal response shapes for a mechanical drum driven off resonance. By using the frequency modal analysis, we describe these shapes as a superposition of resonance modes. We find that the spatial distribution of the oscillating component of the driving force affects the modal weight or participation. Moreover, we are able to infer the asymmetry of the drum by studying the dependence of the resonance modes shapes on the frequency of the driving force. Our results highlight that dynamic responses of any mechanical system are mixtures of their resonance modes with various modal weights, further giving credence to the universality of this phenomenon.
Nanomechanical resonators based on strained silicon nitride (Si$_3$N$_4$) have received a large amount of attention in fields such as sensing and quantum optomechanics due to their exceptionally high quality factors ($Q$s). Room-temperature $Q$s appr oaching 1 billion are now in reach by means of phononic crystals (soft-clamping) and strain engineering. Despite great progress in enhancing $Q$s, difficulties in fabrication of soft-clamped samples limits their implementation into actual devices. An alternative means of achieving ultra-high $Q$s was shown using trampoline resonators with engineered clamps, which serves to localize the stress to the center of the resonator, while minimizing stress at the clamping. The effectiveness of this approach has since come into question from recent studies employing string resonators with clamp-tapering. Here, we investigate this idea using nanomechanical string resonators with engineered clampings similar to those presented for trampolines. Importantly, the effect of orienting the strings diagonally or perpendicularly with respect to the silicon frame is investigated. It is found that increasing the clamp width for diagonal strings slightly increases the $Q$s of the fundamental out-of-plane mode at small radii, while perpendicular strings only deteriorate with increasing clamp width. Measured $Q$s agree well with finite element method simulations even for higher-order resonances. The small increase cannot account for previously reported $Q$s of trampoline resonators. Instead, we propose the effect to be intrinsic and related to surface and radiation losses.
We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا