ﻻ يوجد ملخص باللغة العربية
Nanomechanical resonators based on strained silicon nitride (Si$_3$N$_4$) have received a large amount of attention in fields such as sensing and quantum optomechanics due to their exceptionally high quality factors ($Q$s). Room-temperature $Q$s approaching 1 billion are now in reach by means of phononic crystals (soft-clamping) and strain engineering. Despite great progress in enhancing $Q$s, difficulties in fabrication of soft-clamped samples limits their implementation into actual devices. An alternative means of achieving ultra-high $Q$s was shown using trampoline resonators with engineered clamps, which serves to localize the stress to the center of the resonator, while minimizing stress at the clamping. The effectiveness of this approach has since come into question from recent studies employing string resonators with clamp-tapering. Here, we investigate this idea using nanomechanical string resonators with engineered clampings similar to those presented for trampolines. Importantly, the effect of orienting the strings diagonally or perpendicularly with respect to the silicon frame is investigated. It is found that increasing the clamp width for diagonal strings slightly increases the $Q$s of the fundamental out-of-plane mode at small radii, while perpendicular strings only deteriorate with increasing clamp width. Measured $Q$s agree well with finite element method simulations even for higher-order resonances. The small increase cannot account for previously reported $Q$s of trampoline resonators. Instead, we propose the effect to be intrinsic and related to surface and radiation losses.
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam induced
Observation of resonance modes is the most straightforward way of studying mechanical oscillations because these modes have maximum response to stimuli. However, a deeper understanding of mechanical motion could be obtained by also looking at modal r
Si3N4 is an excellent material for applications of nanophotonics at visible wavelengths due to its wide bandgap and moderately large refractive index (n $approx$ 2.0). We present the fabrication and characterization of Si3N4 photonic crystal nanobeam
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy and quantum control of mechanical oscillators via opto- and electromechanics. The mechanical quality
We describe the measurement and modeling of amplitude noise and phase noise in ultra-high Q nanomechanical resonators made from stoichiometric silicon nitride. With quality factors exceeding 2 million, the resonators noise performance is studied with