ﻻ يوجد ملخص باللغة العربية
We propose a fully asynchronous networked aggregative game (Asy-NAG) where each player minimizes a cost function that depends on its local action and the aggregate of all players actions. In sharp contrast to the existing NAGs, each player in our Asy-NAG can compute an estimate of the aggregate action at any wall-clock time by only using (possibly stale) information from nearby players of a directed network. Such an asynchronous update does not require any coordination among players. Moreover, we design a novel distributed algorithm with an aggressive mechanism for each player to adaptively adjust the optimization stepsize per update. Particularly, the slow players in terms of updating their estimates smartly increase their stepsizes to catch up with the fast ones. Then, we develop an augmented system approach to address the asynchronicity and the information delays between players, and rigorously show the convergence to a Nash equilibrium of the Asy-NAG via a perturbed coordinate algorithm which is also of independent interest. Finally, we evaluate the performance of the distributed algorithm through numerical simulations.
This paper considers a networked aggregative game (NAG) where the players are distributed over a communication network. By only communicating with a subset of players, the goal of each player in the NAG is to minimize an individual cost function that
This paper shows the existence of $mathcal{O}(frac{1}{n^gamma})$-Nash equilibria in $n$-player noncooperative aggregative games where the players cost functions depend only on their own action and the average of all the players actions, and is lower
We address the problem of assessing the robustness of the equilibria in uncertain, multi-agent games. Specifically, we focus on generalized Nash equilibrium problems in aggregative form subject to linear coupling constraints affected by uncertainty w
In this paper, we aim to design a distributed approximate algorithm for seeking Nash equilibria of an aggregative game. Due to the local set constraints of each player, projectionbased algorithms have been widely employed for solving such problems ac
The objective of this paper is to analyze the existence of equilibria for a class of deterministic mean field games of controls. The interaction between players is due to both a congestion term and a price function which depends on the distributions