ترغب بنشر مسار تعليمي؟ اضغط هنا

An All-Sky Search for Bursts of Very High Energy Gamma Rays with HAWC

106   0   0.0 ( 0 )
 نشر من قبل Joshua Wood
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joshua Wood




اسأل ChatGPT حول البحث

A new ground-based wide-field extensive air shower array known as the High-Altitude Water Cherenkov (HAWC) Observatory promises a new window to monitoring the $sim$100 GeV gamma-ray sky with the potential for detecting a high energy spectral cutoff in gamma-ray bursts (GRBs). It represents a roughly 15 times sensitivity gain over the previous generation of wide-field gamma-ray air shower instruments and is able to detect the Crab Nebula at high significance ($>$5 $sigma$) with each daily transit. Its wide field-of-view ($sim$2 sr) and $>$95% uptime make it an ideal instrument for detecting GRB emission at $sim$100 GeV with an expectation for observing $sim$1 GRB per year based on existing measurements of GRB emission. An all-sky, self-triggered search for VHE emission produced by GRBs with HAWC has been developed. We present the results of this search on three characteristic GRB emission timescales, 0.2 seconds, 1 second, and 10 seconds, in the first year of the fully-populated HAWC detector which is the most sensitive dataset to date. No significant detections were found, allowing us to place upper limits on the rate of GRBs containing appreciable emission in the $sim$100 GeV band. These constraints exclude previously unexamined parameter space.



قيم البحث

اقرأ أيضاً

We present a search of very high energy gamma-ray emission from the Northern $textit{Fermi}$ Bubble region using data collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern $textit{Fermi}$ Bubble region, hence upper limits above $1,text{TeV}$ are calculated. The upper limits are between $3times 10^{-7},text{GeV}, text{cm}^{-2}, text{s}^{-1},text{sr}^{-1}$ and $4times 10^{-8},text{GeV},text{cm}^{-2},text{s}^{-1},text{sr}^{-1}$. The upper limits disfavor a proton injection spectrum that extends beyond $100,text{TeV}$ without being suppressed. They also disfavor a hadronic injection spectrum derived from neutrino measurements.
77 - Joshua Wood 2015
The High Altitude Water Cherenkov (HAWC) Observatory is a ground-based TeV gamma-ray observatory in the state of Puebla, Mexico at an altitude of 4100 m. Its 22,000 m$^2$ instrumented area, wide field of view ($sim$2 sr), and >95% uptime make it an i deal instrument for discovering gamma-ray burst (GRB) emission at $sim$100 GeV. Such a discovery would provide key information about the origins of prompt GRB emission as well as constraints on extra-galactic background light (EBL) models and the violation of Lorentz invariance. We will present prospects for discovering GRB emission at $sim$100 GeV with a simple, all-sky search algorithm using HAWC data that is most sensitive to short GRBs. The search algorithm presented here can also be used to detect other short transients with timescales and fluxes similar to short GRBs.
Gamma-ray bursts (GRBs) are among the most luminous sources in the universe. The nature of their emission at TeV energies is one of the most relevant open issues related to these events. The temporal and spectral features inferred from the early and late emissions usually known as prompt and afterglow, respectively, can be interpreted within the context of the fireball model. The synchrotron self-Compton process is expected during the afterglow phase. We explain how the theoretical SSC light curves can be compared with hypothetical upper limit located at z=0.3. We show the allowed parameter space of the microphysical parameters and density of the circumburst medium. The most restrictive results are obtained when the SSC process lies in the fast cooling regime
262 - C. B. Adams , W. Benbow , A. Brill 2021
The recent discovery of electromagnetic signals in coincidence with neutron-star mergers has solidified the importance of multimessenger campaigns in studying the most energetic astrophysical events. Pioneering multimessenger observatories, such as L IGO/Virgo and IceCube, record many candidate signals below the detection significance threshold. These sub-threshold event candidates are promising targets for multimessenger studies, as the information provided by them may, when combined with contemporaneous gamma-ray observations, lead to significant detections. Here we describe a new method that uses such candidates to search for transient events using archival very-high-energy gamma-ray data from imaging atmospheric Cherenkov telescopes (IACTs). We demonstrate the application of this method to sub-threshold binary neutron star (BNS) merger candidates identified in Advanced LIGOs first observing run. We identify eight hours of archival VERITAS observations coincident with seven BNS merger candidates and search them for TeV emission. No gamma-ray emission is detected; we calculate upper limits on the integral flux and compare them to a short gamma-ray burst model. We anticipate this search method to serve as a starting point for IACT searches with future LIGO/Virgo data releases as well as in other sub-threshold studies for multimessenger transients, such as IceCube neutrinos. Furthermore, it can be deployed immediately with other current-generation IACTs, and has the potential for real-time use that places minimal burden on experimental operations. Lastly, this method may serve as a pilot for studies with the Cherenkov Telescope Array, which has the potential to observe even larger fields of view in its divergent pointing mode.
We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-y ear search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCubes four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا