ﻻ يوجد ملخص باللغة العربية
We present predictions for hadronic decays of the Higgs boson at next-to-next-to-leading order (NNLO) in QCD matched with parton shower based on the POWHEG framework. Those include decays into bottom quarks with full bottom-quark mass dependence, light quarks, and gluons in the heavy top quark effective theory. Our calculations describe exclusive decays of the Higgs boson with leading logarithmic accuracy in the Sudakov region and next-to-leading order (NLO) accuracy matched with parton shower in the three-jet region, with normalizations fixed to the partial width at NNLO. We estimated remaining perturbative uncertainties taking typical event shape variables as an example and demonstrated the need of future improvements on both parton shower and matrix element calculations. The calculations can be used immediately in evaluations of the physics performances of detector designs for future Higgs factories.
We present results for Higgs boson pair production with variations of the trilinear Higgs boson self-coupling at next-to-leading order (NLO) in QCD including the full top quark mass dependence. Differential results at 14 TeV are presented, and we dis
We present a new set of parton distributions obtained at NNLO. These differ from the previous sets available at NNLO due to improvements in the theoretical treatment. In particular we include a full treatment of heavy flavours in the region near the
We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We
We present the Higgs Characterisation (HC) framework to study the properties of the Higgs boson observed at 125 GeV. In this report, we focus on CP properties of the top-quark Yukawa interaction, and show predictions at next-to-leading order accuracy
We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for qu