ﻻ يوجد ملخص باللغة العربية
Physically-motivated and mathematically robust atom-centred representations of molecular structures are key to the success of modern atomistic machine learning (ML) methods. They lie at the foundation of a wide range of methods to predict the properties of both materials and molecules as well as to explore and visualize the chemical compound and configuration space. Recently, it has become clear that many of the most effective representations share a fundamental formal connection: that they can all be expressed as a discretization of N-body correlation functions of the local atom density, suggesting the opportunity of standardizing and, more importantly, optimizing the calculation of such representations. We present an implementation, named librascal, whose modular design lends itself both to developing refinements to the density-based formalism and to rapid prototyping for new developments of rotationally equivariant atomistic representations. As an example, we discuss SOAP features, perhaps the most widely used member of this family of representations, to show how the expansion of the local density can be optimized for any choice of radial basis set. We discuss the representation in the context of a kernel ridge regression model, commonly used with SOAP features, and analyze how the computational effort scales for each of the individual steps of the calculation. By applying data reduction techniques in feature space, we show how to further reduce the total computational cost by at up to a factor of 4 or 5 without affecting the models symmetry properties and without significantly impacting its accuracy.
The applications of machine learning techniques to chemistry and materials science become more numerous by the day. The main challenge is to devise representations of atomic systems that are at the same time complete and concise, so as to reduce the
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including x-ray absorption (XAS), x-ray emission (XES), and both resonant and non-resonant inelastic x-ray scattering spectra (N/RIXS)
Many-body descriptors are widely used to represent atomic environments in the construction of machine learned interatomic potentials and more broadly for fitting, classification and embedding tasks on atomic structures. It was generally believed that
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energ
The semilocal meta generalized gradient approximation (MGGA) for the exchange-correlation functional of Kohn-Sham (KS) density functional theory can yield accurate ground-state energies simultaneously for atoms, molecules, surfaces, and solids, due t