ﻻ يوجد ملخص باللغة العربية
The applications of machine learning techniques to chemistry and materials science become more numerous by the day. The main challenge is to devise representations of atomic systems that are at the same time complete and concise, so as to reduce the number of reference calculations that are needed to predict the properties of different types of materials reliably. This has led to a proliferation of alternative ways to convert an atomic structure into an input for a machine-learning model. We introduce an abstract definition of chemical environments that is based on a smoothed atomic density, using a bra-ket notation to emphasize basis set independence and to highlight the connections with some popular choices of representations for describing atomic systems. The correlations between the spatial distribution of atoms and their chemical identities are computed as inner products between these feature kets, which can be given an explicit representation in terms of the expansion of the atom density on orthogonal basis functions, that is equivalent to the smooth overlap of atomic positions (SOAP) power spectrum, but also in real space, corresponding to $n$-body correlations of the atom density. This formalism lays the foundations for a more systematic tuning of the behavior of the representations, by introducing operators that represent the correlations between structure, composition, and the target properties. It provides a unifying picture of recent developments in the field and indicates a way forward towards more effective and computationally affordable machine-learning schemes for molecules and materials.
Physically-motivated and mathematically robust atom-centred representations of molecular structures are key to the success of modern atomistic machine learning (ML) methods. They lie at the foundation of a wide range of methods to predict the propert
We propose a simple, but efficient and accurate machine learning (ML) model for developing high-dimensional potential energy surface. This so-called embedded atom neural network (EANN) approach is inspired by the well-known empirical embedded atom me
The concept of machine learning configuration interaction (MLCI) [J. Chem. Theory Comput. 2018, 14, 5739], where an artificial neural network (ANN) learns on the fly to select important configurations, is further developed so that accurate ab initio
Statistical learning algorithms are finding more and more applications in science and technology. Atomic-scale modeling is no exception, with machine learning becoming commonplace as a tool to predict energy, forces and properties of molecules and co
Two types of approaches to modeling molecular systems have demonstrated high practical efficiency. Density functional theory (DFT), the most widely used quantum chemical method, is a physical approach predicting energies and electron densities of mol