ﻻ يوجد ملخص باللغة العربية
In software reverse engineering, decompilation is the process of recovering source code from binary files. Decompilers are used when it is necessary to understand or analyze software for which the source code is not available. Although existing decompilers commonly obtain source code with the same behavior as the binaries, that source code is usually hard to interpret and certainly differs from the original code written by the programmer. Massive codebases could be used to build supervised machine learning models aimed at improving existing decompilers. In this article, we build different classification models capable of inferring the high-level type returned by functions, with significantly higher accuracy than existing decompilers. We automatically instrument C source code to allow the association of binary patterns with their corresponding high-level constructs. A dataset is created with a collection of real open-source applications plus a huge number of synthetic programs. Our system is able to predict function return types with a 79.1% F1-measure, whereas the best decompiler obtains a 30% F1-measure. Moreover, we document the binary patterns used by our classifier to allow their addition in the implementation of existing decompilers.
Building user trust in dialogue agents requires smooth and consistent dialogue exchanges. However, agents can easily lose conversational context and generate irrelevant utterances. These situations are called dialogue breakdown, where agent utterance
In recent years, Neural Machine Translator (NMT) has shown promise in automatically editing source code. Typical NMT based code editor only considers the code that needs to be changed as input and suggests developers with a ranked list of patched cod
The training set of atomic configurations is key to the performance of any Machine Learning Force Field (MLFF) and, as such, the training set selection determines the applicability of the MLFF model for predictive molecular simulations. However, most
One of the most popular paradigms of applying large, pre-trained NLP models such as BERT is to fine-tune it on a smaller dataset. However, one challenge remains as the fine-tuned model often overfits on smaller datasets. A symptom of this phenomenon
Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research