ﻻ يوجد ملخص باللغة العربية
We study the quench dynamics of non-Hermitian topological models with non-Hermitian skin effects. Adopting the non-Bloch band theory and projecting quench dynamics onto the generalized Brillouin zone, we find that emergent topological structures, in the form of dynamic skyrmions, exist in the generalized momentum-time domain, and are correlated with the non-Bloch topological invariants of the static Hamiltonians. The skyrmion structures anchor on the fixed points of dynamics whose existence are conditional on the coincidence of generalized Brillouin zones of the pre- and post-quench Hamiltonians. Global signatures of dynamic skyrmions, however, persist well beyond such a condition, thus offering a general dynamic detection scheme for non-Bloch topology in the presence of non-Hermitian skin effects. Applying our theory to an experimentally relevant, non-unitary quantum walk, we explicitly demonstrate how the non-Bloch topological invariants can be revealed through the non-Bloch quench dynamics.
Hopf insulators are exotic topological states of matter outside the standard ten-fold way classification based on discrete symmetries. Its topology is captured by an integer invariant that describes the linking structures of the Hamiltonian in the th
We study the collisionless dynamics of two classes of nonintegrable pairing models. One is a BCS model with separable energy-dependent interactions, the other - a 2D topological superconductor with spin-orbit coupling and a band-splitting external fi
Topological defects in Bloch bands, such as Dirac points in graphene, and their resulting Berry phases play an important role for the electronic dynamics in solid state crystals. Such defects can arise in systems with a two-atomic basis due to the mo
We propose to measure band topology via quantized drift of Bloch oscillations in a two-dimensional Harper-Hofstadter lattice subjected to tilted fields in both directions. When the difference between the two tilted fields is large, Bloch oscillations
Exponential decay laws describe systems ranging from unstable nuclei to fluorescent molecules, in which the probability of jumping to a lower-energy state in any given time interval is static and history-independent. These decays, involving only a me