ﻻ يوجد ملخص باللغة العربية
Hopf insulators are exotic topological states of matter outside the standard ten-fold way classification based on discrete symmetries. Its topology is captured by an integer invariant that describes the linking structures of the Hamiltonian in the three-dimensional momentum space. In this paper, we investigate the quantum dynamics of Hopf insulators across a sudden quench and show that the quench dynamics is characterized by a $mathbb{Z}_2$ invariant $ u$ which reveals a rich interplay between quantum quench and static band topology. We construct the $mathbb{Z}_2$ topological invariant using the loop unitary operator, and prove that $ u$ relates the pre- and post-quench Hopf invariants through $ u=(mathcal{L}-mathcal{L}_0)bmod 2$. The $mathbb{Z}_2$ nature of the dynamical invariant is in sharp contrast to the $mathbb{Z}$ invariant for the quench dynamics of Chern insulators in two dimensions. The non-trivial dynamical topology is further attributed to the emergence of $pi$-defects in the phase band of the loop unitary. These $pi$-defects are generally closed curves in the momentum-time space, for example, as nodal rings carrying Hopf charge.
We study the quench dynamics of non-Hermitian topological models with non-Hermitian skin effects. Adopting the non-Bloch band theory and projecting quench dynamics onto the generalized Brillouin zone, we find that emergent topological structures, in
We propose a simple scheme for tomography of band-insulating states in one- and two-dimensional optical lattices with two sublattice states. In particular, the scheme maps out the Berry curvature in the entire Brillouin zone and extracts topological
We study the collisionless dynamics of two classes of nonintegrable pairing models. One is a BCS model with separable energy-dependent interactions, the other - a 2D topological superconductor with spin-orbit coupling and a band-splitting external fi
Non-Hermitian quantum many-body systems are a fascinating subject to be explored. Using the generalized density matrix renormalisation group method and complementary exact diagonalization, we elucidate the many-body ground states and dynamics of a 1D
Recently, quantum simulation of low-dimensional lattice gauge theories (LGTs) has attracted many interests, which may improve our understanding of strongly correlated quantum many-body systems. Here, we propose an implementation to approximate $mathb