ترغب بنشر مسار تعليمي؟ اضغط هنا

WeChat AI & ICTs Submission for DSTC9 Interactive Dialogue Evaluation Track

305   0   0.0 ( 0 )
 نشر من قبل Zekang Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We participate in the DSTC9 Interactive Dialogue Evaluation Track (Gunasekara et al. 2020) sub-task 1 (Knowledge Grounded Dialogue) and sub-task 2 (Interactive Dialogue). In sub-task 1, we employ a pre-trained language model to generate topic-related responses and propose a response ensemble method for response selection. In sub-task2, we propose a novel Dialogue Planning Model (DPM) to capture conversation flow in the interaction with humans. We also design an integrated open-domain dialogue system containing pre-process, dialogue model, scoring model, and post-process, which can generate fluent, coherent, consistent, and humanlike responses. We tie 1st on human ratings and also get the highest Meteor, and Bert-score in sub-task 1, and rank 3rd on interactive human evaluation in sub-task 2.



قيم البحث

اقرأ أيضاً

Current conversational AI systems aim to understand a set of pre-designed requests and execute related actions, which limits them to evolve naturally and adapt based on human interactions. Motivated by how children learn their first language interact ing with adults, this paper describes a new Teachable AI system that is capable of learning new language nuggets called concepts, directly from end users using live interactive teaching sessions. The proposed setup uses three models to: a) Identify gaps in understanding automatically during live conversational interactions, b) Learn the respective interpretations of such unknown concepts from live interactions with users, and c) Manage a classroom sub-dialogue specifically tailored for interactive teaching sessions. We propose state-of-the-art transformer based neural architectures of models, fine-tuned on top of pre-trained models, and show accuracy improvements on the respective components. We demonstrate that this method is very promising in leading way to build more adaptive and personalized language understanding models.
We describe Facebooks multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems cove ring all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous years winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation.
This paper introduces WeChat AIs participation in WMT 2021 shared news translation task on English->Chinese, English->Japanese, Japanese->English and English->German. Our systems are based on the Transformer (Vaswani et al., 2017) with several novel and effective variants. In our experiments, we employ data filtering, large-scale synthetic data generation (i.e., back-translation, knowledge distillation, forward-translation, iterative in-domain knowledge transfer), advanced finetuning approaches, and boosted Self-BLEU based model ensemble. Our constrained systems achieve 36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU scores on English->Chinese, English->Japanese, Japanese->English and English->German, respectively. The BLEU scores of English->Chinese, English->Japanese and Japanese->English are the highest among all submissions, and that of English->German is the highest among all constrained submissions.
We participate in the WMT 2020 shared news translation task on Chinese to English. Our system is based on the Transformer (Vaswani et al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese to English system achieves 36.9 case-sensitive BLEU score, which is the highest among all submissions.
While recent years have witnessed the emergence of various explainable methods in machine learning, to what degree the explanations really represent the reasoning process behind the model prediction -- namely, the faithfulness of explanation -- is st ill an open problem. One commonly used way to measure faithfulness is textit{erasure-based} criteria. Though conceptually simple, erasure-based criterion could inevitably introduce biases and artifacts. We propose a new methodology to evaluate the faithfulness of explanations from the textit{counterfactual reasoning} perspective: the model should produce substantially different outputs for the original input and its corresponding counterfactual edited on a faithful feature. Specially, we introduce two algorithms to find the proper counterfactuals in both discrete and continuous scenarios and then use the acquired counterfactuals to measure faithfulness. Empirical results on several datasets show that compared with existing metrics, our proposed counterfactual evaluation method can achieve top correlation with the ground truth under diffe

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا