ترغب بنشر مسار تعليمي؟ اضغط هنا

Safer Illinois and RokWall: Privacy Preserving University Health Apps for COVID-19

254   0   0.0 ( 0 )
 نشر من قبل Vikram Sharma Mailthody
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

COVID-19 has fundamentally disrupted the way we live. Government bodies, universities, and companies worldwide are rapidly developing technologies to combat the COVID-19 pandemic and safely reopen society. Essential analytics tools such as contact tracing, super-spreader event detection, and exposure mapping require collecting and analyzing sensitive user information. The increasing use of such powerful data-driven applications necessitates a secure, privacy-preserving infrastructure for computation on personal data. In this paper, we analyze two such computing infrastructures under development at the University of Illinois at Urbana-Champaign to track and mitigate the spread of COVID-19. First, we present Safer Illinois, a system for decentralized health analytics supporting two applications currently deployed with widespread adoption: digital contact tracing and COVID-19 status cards. Second, we introduce the RokWall architecture for privacy-preserving centralized data analytics on sensitive user data. We discuss the architecture of these systems, design choices, threat models considered, and the challenges we experienced in developing production-ready systems for sensitive data analysis.



قيم البحث

اقرأ أيضاً

In the fight against Covid-19, many governments and businesses are in the process of evaluating, trialling and even implementing so-called immunity passports. Also known as antibody or health certificates, there is a clear demand for any technology t hat could allow people to return to work and other crowded places without placing others at risk. One of the major criticisms of such systems is that they could be misused to unfairly discriminate against those without immunity, allowing the formation of an `immuno-privileged class of people. In this work we are motivated to explore an alternative technical solution that is non-discriminatory by design. In particular we propose health tokens -- randomised health certificates which, using methods from differential privacy, allow individual test results to be randomised whilst still allowing useful aggregate risk estimates to be calculated. We show that health tokens could mitigate immunity-based discrimination whilst still presenting a viable mechanism for estimating the collective transmission risk posed by small groups of users. We evaluate the viability of our approach in the context of identity-free and identity-binding use cases and then consider a number of possible attacks. Our experimental results show that for groups of size 500 or more, the error associated with our method can be as low as 0.03 on average and thus the aggregated results can be useful in a number of identity-free contexts. Finally, we present the results of our open-source prototype which demonstrates the practicality of our solution.
Contact tracing is an essential tool for public health officials and local communities to fight the spread of novel diseases, such as for the COVID-19 pandemic. The Singaporean government just released a mobile phone app, TraceTogether, that is desig ned to assist health officials in tracking down exposures after an infected individual is identified. However, there are important privacy implications of the existence of such tracking apps. Here, we analyze some of those implications and discuss ways of ameliorating the privacy concerns without decreasing usefulness to public health. We hope in writing this document to ensure that privacy is a central feature of conversations surrounding mobile contact tracing apps and to encourage community efforts to develop alternative effective solutions with stronger privacy protection for the users. Importantly, though we discuss potential modifications, this document is not meant as a formal research paper, but instead is a response to some of the privacy characteristics of direct contact tracing apps like TraceTogether and an early-stage Request for Comments to the community. Date written: 2020-03-24 Minor correction: 2020-03-30
65 - Lucy Simko 2020
There is growing interest in technology-enabled contact tracing, the process of identifying potentially infected COVID-19 patients by notifying all recent contacts of an infected person. Governments, technology companies, and research groups alike re cognize the potential for smartphones, IoT devices, and wearable technology to automatically track close contacts and identify prior contacts in the event of an individuals positive test. However, there is currently significant public discussion about the tensions between effective technology-based contact tracing and the privacy of individuals. To inform this discussion, we present the results of a sequence of online surveys focused on contact tracing and privacy, each with 100 participants. Our first surveys were on April 1 and 3, and we report primarily on those first two surveys, though we present initial findings from later survey dates as well. Our results present the diversity of public opinion and can inform the public discussion on whether and how to leverage technology to reduce the spread of COVID-19. We are continuing to conduct longitudinal measurements, and will update this report over time; citations to this version of the report should reference Report Version 1.0, May 8, 2020. NOTE: As of December 4, 2020, this report has been superseded by Report Version 2.0, found at arXiv:2012.01553. Please read and cite Report Version 2.0 instead.
Coronavirus disease 2019, i.e. COVID-19 has imposed the public health measure of keeping social distancing for preventing mass transmission of COVID-19. For monitoring the social distancing and keeping the trace of transmission, we are obligated to d evelop various types of digital surveillance systems, which include contact tracing systems and drone-based monitoring systems. Due to the inconvenience of manual labor, traditional contact tracing systems are gradually replaced by the efficient automated contact tracing applications that are developed for smartphones. However, the commencement of automated contact tracing applications introduces the inevitable privacy and security challenges. Nevertheless, unawareness and/or lack of smartphone usage among mass people lead to drone-based monitoring systems. These systems also invite unwelcomed privacy and security challenges. This paper discusses the recently designed and developed digital surveillance system applications with their protocols deployed in several countries around the world. Their privacy and security challenges are discussed as well as analyzed from the viewpoint of privacy acts. Several recommendations are suggested separately for automated contact tracing systems and drone-based monitoring systems, which could further be explored and implemented afterwards to prevent any possible privacy violation and protect an unsuspecting person from any potential cyber attack.
The COVID-19 pandemic has fueled the development of smartphone applications to assist disease management. Many corona apps require widespread adoption to be effective, which has sparked public debates about the privacy, security, and societal implica tions of government-backed health applications. We conducted a representative online study in Germany (n = 1,003), the US (n = 1,003), and China (n = 1,019) to investigate user acceptance of corona apps, using a vignette design based on the contextual integrity framework. We explored apps for contact tracing, symptom checks, quarantine enforcement, health certificates, and mere information. Our results provide insights into data processing practices that foster adoption and reveal significant differences between countries, with user acceptance being highest in China and lowest in the US. Chinese participants prefer the collection of personalized data, while German and US participants favor anonymity. Across countries, contact tracing is viewed more positively than quarantine enforcement, and technical malfunctions negatively impact user acceptance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا