ﻻ يوجد ملخص باللغة العربية
In a traveling wave microresonator, the cascaded four-wave mixing between optical modes allows the generation of frequency combs, including the intriguing dissipative Kerr solitons (DKS). Here, we theoretically investigate the quantum fluctuations of the comb and reveal the quantum feature of the soliton. It is demonstrated that the fluctuations of Kerr frequency comb lines are correlated, leading to multi-color continuous-variable entanglement. In particular, in the DKS state, the coherent comb lines stimulate photon-pair generation and also coherent photon conversion between all optical modes, and exhibit all-to-all connection of quantum entanglement. The broadband multi-color entanglement is not only universal, but also is robust against practical imperfections, such as extra optical loss or extraordinary frequency shift of a few modes. Our work reveals the prominent quantum nature of DKSs, which is of fundamental interest in quantum optics and also holds potential for quantum network and distributed quantum sensing applications.
This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this cl
We demonstrate stable microresonator Kerr soliton frequency combs in a III-V platform (AlGaAs on SiO$_2$) through quenching of thermorefractive effects by cryogenic cooling to temperatures between 4~K and 20~K. This cooling reduces the resonators the
We present the first measurement of squeezed-state entanglement between the twin beams produced in an Optical Parametric Oscillator (OPO) operating above threshold. Besides the usual squeezing in the intensity difference between the twin beams, we ha
The capability to store light for extended periods of time enables optical cavities to act as narrow-band optical filters, whose linewidth corresponds to the cavitys inverse energy storage time. Here, we report on nonlinear filtering of an optical pu
Dissipative solitons are self-localised structures that can persist indefinitely in open systems characterised by continual exchange of energy and/or matter with the environment. They play a key role in photonics, underpinning technologies from mode-