ﻻ يوجد ملخص باللغة العربية
Frequent Subgraph Mining (FSM) is the key task in many graph mining and machine learning applications. Numerous systems have been proposed for FSM in the past decade. Although these systems show good performance for small patterns (with no more than four vertices), we found that they have difficulty in mining larger patterns. In this work, we propose a novel two-vertex exploration strategy to accelerate the mining process. Compared with the single-vertex exploration adopted by previous systems, our two-vertex exploration avoids the large memory consumption issue and significantly reduces the memory access overhead. We further enhance the performance through an index-based quick pattern technique that reduces the overhead of isomorphism checks, and a subgraph sampling technique that mitigates the issue of subgraph explosion. The experimental results show that our system achieves significant speedups against the state-of-the-art graph pattern mining systems and supports larger pattern mining tasks that none of the existing systems can handle.
Frequent-pattern mining is a common approach to reveal the valuable hidden trends behind data. However, existing frequent-pattern mining algorithms are designed for DRAM, instead of persistent memories (PMs), which can lead to severe performance and
With the wide development of databases in general and data warehouses in particular, it is important to reduce the tasks that a database administrator must perform manually. The aim of auto-administrative systems is to administrate and adapt themselv
Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these thr
FP-Growth algorithm is a Frequent Pattern Min- ing (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivot
The mining of frequent subgraphs from labeled graph data has been studied extensively. Furthermore, much attention has recently been paid to frequent pattern mining from graph sequences. A method, called GTRACE, has been proposed to mine frequent pat