ترغب بنشر مسار تعليمي؟ اضغط هنا

Fault Tolerant Frequent Pattern Mining

217   0   0.0 ( 0 )
 نشر من قبل Sameh Shohdy
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

FP-Growth algorithm is a Frequent Pattern Min- ing (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing, though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.

قيم البحث

اقرأ أيضاً

Networks are used as highly expressive tools in different disciplines. In recent years, the analysis and mining of temporal networks have attracted substantial attention. Frequent pattern mining is considered an essential task in the network science literature. In addition to the numerous applications, the investigation of frequent pattern mining in networks directly impacts other analytical approaches, such as clustering, quasi-clique and clique mining, and link prediction. In nearly all the algorithms proposed for frequent pattern mining in temporal networks, the networks are represented as sequences of static networks. Then, the inter- or intra-network patterns are mined. This type of representation imposes a computation-expressiveness trade-off to the mining problem. In this paper, we propose a novel representation that can preserve the temporal aspects of the network losslessly. Then, we introduce the concept of constrained interval graphs (CIGs). Next, we develop a series of algorithms for mining the complete set of frequent temporal patterns in a temporal network data set. We also consider four different definitions of isomorphism to allow noise tolerance in temporal data collection. Implementing the algorithm for three real-world data sets proves the practicality of the proposed algorithm and its capability to discover unknown patterns in various settings.
The celebrated result of Fischer, Lynch and Paterson is the fundamental lower bound for asynchronous fault tolerant computation: any 1-crash resilient asynchronous agreement protocol must have some (possibly measure zero) probability of not terminati ng. In 1994, Ben-Or, Kelmer and Rabin published a proof-sketch of a lesser known lower bound for asynchronous fault tolerant computation with optimal resilience against a Byzantine adversary: if $nle 4t$ then any t-resilient asynchronous verifiable secret sharing protocol must have some non-zero probability of not terminating. Our main contribution is to revisit this lower bound and provide a rigorous and more general proof. Our second contribution is to show how to avoid this lower bound. We provide a protocol with optimal resilience that is almost surely terminating for a strong common coin functionality. Using this new primitive we provide an almost surely terminating protocol with optimal resilience for asynchronous Byzantine agreement that has a new fair validity property. To the best of our knowledge this is the first asynchronous Byzantine agreement with fair validity in the information theoretic setting.
215 - A. Katsarakis 2020
Todays datacenter applications are underpinned by datastores that are responsible for providing availability, consistency, and performance. For high availability in the presence of failures, these datastores replicate data across several nodes. This is accomplished with the help of a reliable replication protocol that is responsible for maintaining the replicas strongly-consistent even when faults occur. Strong consistency is preferred to weaker consistency models that cannot guarantee an intuitive behavior for the clients. Furthermore, to accommodate high demand at real-time latencies, datastores must deliver high throughput and low latency. This work introduces Hermes, a broadcast-based reliable replication protocol for in-memory datastores that provides both high throughput and low latency by enabling local reads and fully-concurrent fast writes at all replicas. Hermes couples logical timestamps with cache-coherence-inspired invalidations to guarantee linearizability, avoid write serialization at a centralized ordering point, resolve write conflicts locally at each replica (hence ensuring that writes never abort) and provide fault-tolerance via replayable writes. Our implementation of Hermes over an RDMA-enabled reliable datastore with five replicas shows that Hermes consistently achieves higher throughput than state-of-the-art RDMA-based reliable protocols (ZAB and CRAQ) across all write ratios while also significantly reducing tail latency. At 5% writes, the tail latency of Hermes is 3.6X lower than that of CRAQ and ZAB.
The vast majority of hardware architectures use a carefully timed reference signal to clock their computational logic. However, standard distribution solutions are not fault-tolerant. In this work, we present a simple grid structure as a more reliabl e clock propagation method and study it by means of simulation experiments. Fault-tolerance is achieved by forwarding clock pulses on arrival of the second of three incoming signals from the previous layer. A key question is how well neighboring grid nodes are synchronized, even without faults. Analyzing the clock skew under typical-case conditions is highly challenging. Because the forwarding mechanism involves taking the median, standard probabilistic tools fail, even when modeling link delays just by unbiased coin flips. Our statistical approach provides substantial evidence that this system performs surprisingly well. Specifically, in an infinitely wide grid of height~$H$, the delay at a pre-selected node exhibits a standard deviation of $O(H^{1/4})$ ($approx 2.7$ link delay uncertainties for $H=2000$) and skew between adjacent nodes of $o(log log H)$ ($approx 0.77$ link delay uncertainties for $H=2000$). We conclude that the proposed system is a very promising clock distribution method. This leads to the open problem of a stochastic explanation of the tight concentration of delays and skews. More generally, we believe that understanding our very simple abstraction of the system is of mathematical interest in its own right.
It is commonly agreed that highly parallel software on Exascale computers will suffer from many more runtime failures due to the decreasing trend in the mean time to failures (MTTF). Therefore, it is not surprising that a lot of research is going on in the area of fault tolerance and fault mitigation. Applications should survive a failure and/or be able to recover with minimal cost. MPI is not yet very mature in handling failures, the User-Level Failure Mitigation (ULFM) proposal being currently the most promising approach is still in its prototype phase. In our work we use GASPI, which is a relatively new communication library based on the PGAS model. It provides the missing features to allow the design of fault-tolerant applications. Instead of introducing algorithm-based fault tolerance in its true sense, we demonstrate how we can build on (existing) clever checkpointing and extend applications to allow integrate a low cost fault detection mechanism and, if necessary, recover the application on the fly. The aspects of process management, the restoration of groups and the recovery mechanism is presented in detail. We use a sparse matrix vector multiplication based application to perform the analysis of the overhead introduced by such modifications. Our fault detection mechanism causes no overhead in failure-free cases, whereas in case of failure(s), the failure detection and recovery cost is of reasonably acceptable order and shows good scalability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا