ﻻ يوجد ملخص باللغة العربية
In this work, we develop a novel data-driven model predictive controller using advanced techniques in the field of machine learning. The objective is to regulate control signals to adjust the desired internal room setpoint temperature, affected indirectly by the external weather states. The methodology involves developing a time-series machine learning model with either a Long Short Term Memory model (LSTM) or a Gradient Boosting Algorithm (XGboost), capable of forecasting this weather states for any desired time horizon and concurrently optimising the control signals to the desired set point. The supervised learning model for mapping the weather states together with the control signals to the room temperature is constructed using a previously developed methodology called Cluster Classify regress (CCR), which is similar in style but scales better to high dimensional dataset than the well-known Mixture-of-Experts. The overall method called CCR-MPC involves a combination of a time series model for weather states prediction, CCR for forwarding and any numerical optimisation method for solving the inverse problem. Forward uncertainty quantification (Forward-UQ) leans towards the regression model in the CCR and is attainable using a Bayesian deep neural network or a Gaussian process (GP). For this work, in the CCR modulation, we employ K-means clustering for Clustering, XGboost classifier for Classification and 5th order polynomial regression for Regression. Inverse UQ can also be obtained by using an I-ES approach for solving the inverse problem or even the well-known Markov chain Monte Carlo (MCMC) approach. The developed CCR-MPC is elegant, and as seen on the numerical experiments is able to optimise the controller to attain the desired setpoint temperature.
This paper presents a method for solving the supervised learning problem in which the output is highly nonlinear and discontinuous. It is proposed to solve this problem in three stages: (i) cluster the pairs of input-output data points, resulting in
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the
We present recent results that demonstrate the power of viewing the problem of V-formation in a flock of birds as one of Model Predictive Control (MPC). The V-formation-MPC marriage can be understood in terms of the problem of synthesizing an optimal
In this work, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performan
The combination of machine learning with control offers many opportunities, in particular for robust control. However, due to strong safety and reliability requirements in many real-world applications, providing rigorous statistical and control-theor