ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-temperature colossal magnetoresistance in terraced single-layer graphene

79   0   0.0 ( 0 )
 نشر من قبل Ariando
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Disorder-induced magnetoresistance (MR) effect is quadratic at low perpendicular magnetic fields and linear at high fields. This effect is technologically appealing, especially in the two-dimensional (2D) materials such as graphene, since it offers potential applications in magnetic sensors with nanoscale spatial resolution. However, it is a great challenge to realize a graphene magnetic sensor based on this effect because of the difficulty in controlling the spatial distribution of disorder and enhancing the MR sensitivity in the single-layer regime. Here, we report a room-temperature colossal MR of up to 5,000% at 9 T in terraced single-layer graphene. By laminating single-layer graphene on a terraced substrate, such as TiO2 terminated SrTiO3, we demonstrate a universal one order of magnitude enhancement in the MR compared to conventional single-layer graphene devices. Strikingly, a colossal MR of >1,000% was also achieved in the terraced graphene even at a high carrier density of ~1012 cm-2. Systematic studies of the MR of single-layer graphene on various oxide- and non-oxide-based terraced surfaces demonstrate that the terraced structure is the dominant factor driving the MR enhancement. Our results open a new route for tailoring the physical property of 2D materials by engineering the strain through a terraced substrate.



قيم البحث

اقرأ أيضاً

Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of th ese materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we develop two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time T, induced by the coupling between the A exciton and the A1 optical phonon. Analysis of two-dimensional beating maps combined with simulations provides the exciton-phonon coupling. The Huang-Rhys factor of ~1 is larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems with a spatial resolution ~260 nm, and will provide design-relevant parameters for the development of optoelectronic devices.
We present a detailed transmission electron microscopy and electron diffraction study of the thinnest possible membrane, a single layer of carbon atoms suspended in vacuum and attached only at its edges. Membranes consisting of two graphene layers ar e also reported. We find that the membranes exhibit an apparently random spontaneous curvature that is strongest in single-layer membranes. A direct visualization of the roughness is presented for two-layer membranes where we used the variation of diffracted intensities with the local orientation of the membrane.
Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchan ge interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elements. For instance, flat band systems with high density of states (DOS) may develop spontaneous magnetic ordering, as exemplified by the Stoner criterion. Here we report tunable magnetism in rhombohedral-stacked few-layer graphene (r-FLG). At small but finite doping (n~10^11 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature, and disappears for n>10^12 cm-2 or T>5K. These results are confirmed by first principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms. The electric field tunability of magnetism provides promise for spintronics and low energy device engineering.
We use a first-principles density functional theory approach to calculate the shift current and linear absorption of uniformly illuminated single-layer Ge and Sn monochalcogenides. We predict strong absorption in the visible spectrum and a large effe ctive three-dimensional shift current ($sim$100 $mu$A/V$^2$), larger than has been previously observed in other polar systems. Moreover, we show that the integral of the shift-current tensor is correlated to the large spontaneous effective three-dimensional electric polarization ($sim$1.9 C/m$^2$). Our calculations indicate that the shift current will be largest in the visible spectrum, suggesting that these monochalcogenides may be promising for polar optoelectronic devices. A Rice-Mele tight-binding model is used to rationalize the shift-current response for these systems, and its dependence on polarization, in general terms with implications for other polar materials
Magnetism in single-side hydrogenated (C$_2$H) and fluorinated (C$_2$F) graphene is analyzed in terms of the Heisenberg model with parameters determined from first principles. We predict a frustrated ground state for both systems, which means the ins tability of collinear spin structures and sheds light on the absence of a conventional magnetic ordering in defective graphene demonstrated in recent experiments. Moreover, our findings suggest a highly correlated magnetic behavior at low temperatures offering the possibility of a spin-liquid state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا