ﻻ يوجد ملخص باللغة العربية
The complex oxide heterostructures such as LaAlO3/SrTiO3 (LAO/STO) interface are paradigmatic platforms to explore emerging multi-degrees of freedom coupling and the associated exotic phenomena. In this study, we reveal the effects of multiorbital and magnetic ordering on Rashba spin-orbit coupling (SOC) at the LAO/STO (001) interface. Based on first-principles calculations, we show that the Rashba spin splitting near the conduction band edge can be tuned substantially by the interfacial insulator-metal transition due to the multiorbital effect of the lowest t_2g bands. We further unravel a competition between Rashba SOC and intrinsic magnetism, in which the Rashba SOC induced spin polarization is suppressed by the interfacial magnetic ordering. These results deepen our understanding of intricate electronic and magnetic reconstruction at the perovskite oxide interfaces and shed light on the engineering of oxide heterostructures for all-oxides-based spintronic devices.
Diluted oxide interface of LaAl1-xMnxO/SrTiO3 (LAMO/STO) provides a new way of tuning the ground states of the interface between the two band insulators of LAO and STO from metallic/superconducting to highly insulating. Increasing the Mn doping level
There is steadily increasing evidence that the two-dimensional electron gas (2DEG) formed at the interface of some insulating oxides like LaAlO3/SrTiO3 and LaTiO3/SrTiO3 is strongly inhomogeneous. The inhomogeneous distribution of electron density is
The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of
The spin-orbit interaction couples the electrons motion to their spin. Accordingly, passing a current in a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice-versa (inverse spin Hall effect,
A rather unique feature of the two-dimensional electron gas (2-DEG) formed at the interface between the two insulators LaAlO3 and SrTiO3 is to host both gate-tunable superconductivity and strong spin-orbit coupling. In the present work, we use the di