ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of disorder on superconductivity and Rashba spin-orbit coupling in LaAlO3/SrTiO3 interfaces

73   0   0.0 ( 0 )
 نشر من قبل Nicolas Bergeal
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A rather unique feature of the two-dimensional electron gas (2-DEG) formed at the interface between the two insulators LaAlO3 and SrTiO3 is to host both gate-tunable superconductivity and strong spin-orbit coupling. In the present work, we use the disorder generated by Cr substitution of Al atoms in LaAlO3 as a tool to explore the nature of superconductivity and spin-orbit coupling in these interfaces. A reduction of the superconducting Tc is observed with Cr doping consistent with an increase of electron-electron interaction in presence of disorder. In addition, the evolution of spin-orbit coupling with gate voltage and Cr doping suggests a DYakonov-Perel mechanism of spin relaxation in the presence of a Rashba-type spin-orbit interaction.



قيم البحث

اقرأ أيضاً

The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two- dimensional electron gases (2-DEGs) at LAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements indicate that the Rashba coupling constant increases linearly with electrostatic doping. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates.
The electric-field tunable Rashba spin-orbit coupling at the LaAlO3/SrTiO3 interface shows potential applications in spintronic devices. However, different gate dependence of the coupling strength has been reported in experiments. On the theoretical side, it has been predicted that the largest Rashba effect appears at the crossing point of the $d_{xy}$ and $d_{xz,yz}$ bands. In this work, we study the tuneability of the Rashba effect in LaAlO3/SrTiO3 by means of back-gating. The Lifshitz transition was crossed multiple times by tuning the gate voltage so that the Fermi energy is tuned to approach or depart from the band crossing. By analyzing the weak antilocalization behavior in the magnetoresistance, we find that the maximum spin-orbit coupling effect occurs when the Fermi energy is near the Lifshitz point. Moreover, we find strong evidence for a single spin winding at the Fermi surface.
Recently, topological superconductors based on Josephson junctions in two-dimensional electron gases with strong Rashba spin-orbit coupling have been proposed as attractive alternatives to wire-based setups. Here, we elucidate how phase-controlled Jo sephson junctions based on quantum wells with [001] growth direction and an arbitrary combination of Rashba and Dresselhaus spin-orbit coupling can also host Majorana bound states for a wide range of parameters as long as the magnetic field is oriented appropriately. Hence, Majorana bound states based on Josephson junctions can appear in a wide class of two-dimensional electron gases. We study the effect of spin-orbit coupling, the Zeeman energies, and the superconducting phase difference to create a full topological phase diagram and find the optimal stability region to observe Majorana bound states in narrow junctions. Surprisingly, for equal Rashba and Dresselhaus spin-orbit coupling, well localized Majorana bound states can appear only for phase differences $phi eqpi$ as the topological gap protecting the Majorana bound states vanishes at $phi=pi$. Our results show that the ratio between Rashba and Dresselhaus spin-orbit coupling or the choice of the in-plane crystallographic axis along which the superconducting phase bias is applied offer additional tunable knobs to test Majorana bound states in these systems. Finally, we discuss signatures of Majorana bound states that could be probed experimentally by tunneling conductance measurements at the edge of the junction.
The discovery of a two-dimensional (2D) electron gas at the (110)-oriented LaAlO3/SrTiO3 in- terface provided us with the opportunity to probe the effect of crystallographic orientation and the ensuing electronic reconstructions on interface properti es beyond the conventional (001)-orientation. At temperatures below 200 mK, we have measured 2D superconductivity with a spatial extension significantly larger (d approx. 24 - 30 nm) than previously reported for (001)-oriented LaAlO3/SrTiO3 interfaces (d approx. 10 nm). The more extended superconductivity brings about the absence of violation of the Pauli paramagnetic limit for the upper critical fields, signaling the distinctive nature of the electronic structure of the (110)-oriented interface with respect to their (001)-counterparts
There is steadily increasing evidence that the two-dimensional electron gas (2DEG) formed at the interface of some insulating oxides like LaAlO3/SrTiO3 and LaTiO3/SrTiO3 is strongly inhomogeneous. The inhomogeneous distribution of electron density is accompanied by an inhomogeneous distribution of the (self-consistent) electric field confining the electrons at the interface. In turn this inhomogeneous transverse electric field induces an inhomogeneous Rashba spin-orbit coupling (RSOC). After an introductory summary on two mechanisms possibly giving rise to an electronic phase separation accounting for the above inhomogeneity,we introduce a phenomenological model to describe the density-dependent RSOC and its consequences. Besides being itself a possible source of inhomogeneity or charge-density waves, the density-dependent RSOC gives rise to interesting physical effects like the occurrence of inhomogeneous spin-current distributions and inhomogeneous quantum-Hall states with chiral edge states taking place in the bulk of the 2DEG. The inhomogeneous RSOC can also be exploited for spintronic devices since it can be used to produce a disorder-robust spin Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا