ﻻ يوجد ملخص باللغة العربية
Reconfigurable intelligent surfaces (RISs) are typically used in multi-user systems to mitigate interference among active transmitters. In contrast, this paper studies a setting with a conventional active encoder as well as a passive encoder that modulates the reflection pattern of the RIS. The RIS hence serves the dual purpose of improving the rate of the active encoder and of enabling communication from the second encoder. The capacity region is characterized, and information-theoretic insights regarding the trade-offs between the rates of the two encoders are derived by focusing on the high- and low-power regimes.
Large-scale antenna arrays employed by the base station (BS) constitute an essential next-generation communications technique. However, due to the constraints of size, cost, and power consumption, it is usually considered unrealistic to use a large-s
This article focuses on the exploitation of reconfigurable intelligent surfaces (RISs) in multi-user networks employing orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA), with an emphasis on investigating the interplay between
Recent considerations for reconfigurable intelligent surfaces (RISs) assume that RISs can convey information by reflection without the need of transmit radio frequency chains, which, however, is a challenging task. In this paper, we propose an RIS-en
Intelligent reflecting surface (IRS) is a new promising technology that is able to reconfigure the wireless propagation channel via smart and passive signal reflection. In this paper, we investigate the capacity region of a two-user communication net
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals