ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent Reflecting Surface Aided Multi-User Communication: Capacity Region and Deployment Strategy

106   0   0.0 ( 0 )
 نشر من قبل Shuowen Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Intelligent reflecting surface (IRS) is a new promising technology that is able to reconfigure the wireless propagation channel via smart and passive signal reflection. In this paper, we investigate the capacity region of a two-user communication network with one access point (AP) aided by $M$ IRS elements for enhancing the user-AP channels, where the IRS incurs negligible delay, thus the user-AP channels via the IRS follow the classic discrete memoryless channel model. In particular, we consider two practical IRS deployment strategies that lead to different effective channels between the users and AP, namely, the distributed deployment where the $M$ elements form two IRSs, each deployed in the vicinity of one user, versus the centralized deployment where all the $M$ elements are deployed in the vicinity of the AP. First, we consider the uplink multiple-access channel (MAC) and derive the capacity/achievable rate regions for both deployment strategies under different multiple access schemes. It is shown that the centralized deployment generally outperforms the distributed deployment under symmetric channel setups in terms of achievable user rates. Next, we extend the results to the downlink broadcast channel (BC) by leveraging the celebrated uplink-downlink (or MAC-BC) duality framework, and show that the superior rate performance of centralized over distributed deployment also holds. Numerical results are presented that validate our analysis, and reveal new and useful insights for optimal IRS deployment in wireless networks.



قيم البحث

اقرأ أيضاً

162 - Shuowen Zhang , Rui Zhang 2020
Intelligent reflecting surface (IRS) is a new promising technology that is able to manipulate the wireless propagation channel via smart and controllable signal reflection. In this paper, we investigate the capacity region of a multiple access channe l (MAC) with two users sending independent messages to an access point (AP), aided by $M$ IRS reflecting elements. We consider two practical IRS deployment strategies that lead to different user-AP effective channels, namely, the distributed deployment where the $M$ reflecting elements form two IRSs, each deployed in the vicinity of one user, versus the centralized deployment where all the $M$ reflecting elements are deployed in the vicinity of the AP. For the distributed deployment, we derive the capacity region in closed-form; while for the centralized deployment, we derive a capacity region outer bound and propose an efficient rate-profile based method to characterize an achievable rate region (or capacity region inner bound). Furthermore, we compare the capacity regions of the two cases and draw useful insights into the optimal deployment of IRS in practical systems.
177 - Shuowen Zhang , Rui Zhang 2019
Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting unit s. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. First, we consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Next, we consider capacity maximization for broadband transmission in a general MIMO orthogonal frequency division multiplexing (OFDM) system under frequency-selective fading channels, where transmit covariance matrices can be optimized for different subcarriers while only one common set of IRS reflection coefficients can be designed to cater to all subcarriers. To tackle this more challenging problem, we propose a new alternating optimization algorithm based on convex relaxation to find a high-quality suboptimal solution. Numerical results show that our proposed algorithms achieve substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperform various benchmark schemes. In particular, it is shown that with the proposed algorithms, various key parameters of the IRS-aided MIMO channel such as channel total power, rank, and condition number can be significantly improved for capacity enhancement.
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user sim ultaneously over the same time-frequency dimension with the help of IRS. Under this setup, we consider three deployment cases: 1) two distributed IRSs placed near the UL user and DL user, respectively; 2) one centralized IRS placed near the DL user; 3) one centralized IRS placed near the UL user. In each case, we aim to minimize the weighted sum transmit power consumption of the AP and UL user by jointly optimizing their transmit power and the passive reflection coefficients at the IRS (or IRSs), subject to the UL and DL users rate constraints and the uni-modulus constraints on the IRS reflection coefficients. First, we analyze the minimum transmit power required in the IRS-aided FD system under each deployment scheme, and compare it with that of the corresponding half-duplex (HD) system. We show that the FD system outperforms its HD counterpart for all IRS deployment schemes, while the distributed deployment further outperforms the other two centralized deployment schemes. Next, we transform the challenging power minimization problem into an equivalent but more tractable form and propose an efficient algorithm to solve it based on the block coordinate descent (BCD) method. Finally, numerical results are presented to validate our analysis as well as the efficacy of the proposed passive beamforming design.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
The performance of a device-to-device (D2D) underlay communication system is limited by the co-channel interference between cellular users (CUs) and D2D devices. To address this challenge, an intelligent reflecting surface (IRS) aided D2D underlay sy stem is studied in this paper. A two-timescale optimization scheme is proposed to reduce the required channel training and feedback overhead, where transmit beamforming at the base station (BS) and power control at the D2D transmitter are adapted to instantaneous effective channel state information (CSI); and the IRS phase shifts are adapted to slow-varying channel mean. Based on the two-timescale optimization scheme, we aim to maximize the D2D ergodic rate subject to a given outage probability constrained signal-to-interference-plus-noise ratio (SINR) target for the CU. The two-timescale problem is decoupled into two sub-problems, and the two sub-problems are solved iteratively with closed-form expressions. Numerical results verify that the two-timescale based optimization performs better than several baselines, and also demonstrate a favorable trade-off between system performance and CSI overhead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا