ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce PeerGAN, a generative adversarial network (GAN) solution to improve the stability of the generated samples and to mitigate mode collapse. Built upon the Vanilla GANs two-player game between the discriminator $D_1$ and the generator $G$, we introduce a peer discriminator $D_2$ to the min-max game. Similar to previous work using two discriminators, the first role of both $D_1$, $D_2$ is to distinguish between generated samples and real ones, while the generator tries to generate high-quality samples which are able to fool both discriminators. Different from existing methods, we introduce another game between $D_1$ and $D_2$ to discourage their agreement and therefore increase the level of diversity of the generated samples. This property alleviates the issue of early mode collapse by preventing $D_1$ and $D_2$ from converging too fast. We provide theoretical analysis for the equilibrium of the min-max game formed among $G, D_1, D_2$. We offer convergence behavior of PeerGAN as well as stability of the min-max game. Its worth mentioning that PeerGAN operates in the unsupervised setting, and the additional game between $D_1$ and $D_2$ does not need any label supervision. Experiments results on a synthetic dataset and on real-world image datasets (MNIST, Fashion MNIST, CIFAR-10, STL-10, CelebA, VGG) demonstrate that PeerGAN outperforms competitive baseline work in generating diverse and high-quality samples, while only introduces negligible computation cost.
A recent technical breakthrough in the domain of machine learning is the discovery and the multiple applications of Generative Adversarial Networks (GANs). Those generative models are computationally demanding, as a GAN is composed of two deep neural
The Deep Neural Networks are vulnerable toadversarial exam-ples(Figure 1), making the DNNs-based systems collapsed byadding the inconspicuous perturbations to the images. Most of the existing works for adversarial attack are gradient-based and suf-fe
Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end, which still follow the tradition
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and the
A Triangle Generative Adversarial Network ($Delta$-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by o