ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge Distillation Methods for Efficient Unsupervised Adaptation Across Multiple Domains

80   0   0.0 ( 0 )
 نشر من قبل Le Thanh Nguyen-Meidine
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Beyond the complexity of CNNs that require training on large annotated datasets, the domain shift between design and operational data has limited the adoption of CNNs in many real-world applications. For instance, in person re-identification, videos are captured over a distributed set of cameras with non-overlapping viewpoints. The shift between the source (e.g. lab setting) and target (e.g. cameras) domains may lead to a significant decline in recognition accuracy. Additionally, state-of-the-art CNNs may not be suitable for such real-time applications given their computational requirements. Although several techniques have recently been proposed to address domain shift problems through unsupervised domain adaptation (UDA), or to accelerate/compress CNNs through knowledge distillation (KD), we seek to simultaneously adapt and compress CNNs to generalize well across multiple target domains. In this paper, we propose a progressive KD approach for unsupervised single-target DA (STDA) and multi-target DA (MTDA) of CNNs. Our method for KD-STDA adapts a CNN to a single target domain by distilling from a larger teacher CNN, trained on both target and source domain data in order to maintain its consistency with a common representation. Our proposed approach is compared against state-of-the-art methods for compression and STDA of CNNs on the Office31 and ImageClef-DA image classification datasets. It is also compared against state-of-the-art methods for MTDA on Digits, Office31, and OfficeHome. In both settings -- KD-STDA and KD-MTDA -- results indicate that our approach can achieve the highest level of accuracy across target domains, while requiring a comparable or lower CNN complexity.

قيم البحث

اقرأ أيضاً

Unsupervised domain adaptation (UDA) seeks to alleviate the problem of domain shift between the distribution of unlabeled data from the target domain w.r.t. labeled data from the source domain. While the single-target UDA scenario is well studied in the literature, Multi-Target Domain Adaptation (MTDA) remains largely unexplored despite its practical importance, e.g., in multi-camera video-surveillance applications. The MTDA problem can be addressed by adapting one specialized model per target domain, although this solution is too costly in many real-world applications. Blending multiple targets for MTDA has been proposed, yet this solution may lead to a reduction in model specificity and accuracy. In this paper, we propose a novel unsupervised MTDA approach to train a CNN that can generalize well across multiple target domains. Our Multi-Teacher MTDA (MT-MTDA) method relies on multi-teacher knowledge distillation (KD) to iteratively distill target domain knowledge from multiple teachers to a common student. The KD process is performed in a progressive manner, where the student is trained by each teacher on how to perform UDA for a specific target, instead of directly learning domain adapted features. Finally, instead of combining the knowledge from each teacher, MT-MTDA alternates between teachers that distill knowledge, thereby preserving the specificity of each target (teacher) when learning to adapt to the student. MT-MTDA is compared against state-of-the-art methods on several challenging UDA benchmarks, and empirical results show that our proposed model can provide a considerably higher level of accuracy across multiple target domains. Our code is available at: https://github.com/LIVIAETS/MT-MTDA
131 - Zhiyuan Wu , Hong Qi , Yu Jiang 2020
Model compression becomes a recent trend due to the requirement of deploying neural networks on embedded and mobile devices. Hence, both accuracy and efficiency are of critical importance. To explore a balance between them, a knowledge distillation s trategy is proposed for general visual representation learning. It utilizes our well-designed activation map adaptive module to replace some blocks of the teacher network, exploring the most appropriate supervisory features adaptively during the training process. Using the teachers hidden layer output to prompt the student network to train so as to transfer effective semantic information.To verify the effectiveness of our strategy, this paper applied our method to cifar-10 dataset. Results demonstrate that the method can boost the accuracy of the student network by 0.6% with 6.5% loss reduction, and significantly improve its training speed.
Currently, the divergence in distributions of design and operational data, and large computational complexity are limiting factors in the adoption of CNNs in real-world applications. For instance, person re-identification systems typically rely on a distributed set of cameras, where each camera has different capture conditions. This can translate to a considerable shift between source (e.g. lab setting) and target (e.g. operational camera) domains. Given the cost of annotating image data captured for fine-tuning in each target domain, unsupervised domain adaptation (UDA) has become a popular approach to adapt CNNs. Moreover, state-of-the-art deep learning models that provide a high level of accuracy often rely on architectures that are too complex for real-time applications. Although several compression and UDA approaches have recently been proposed to overcome these limitations, they do not allow optimizing a CNN to simultaneously address both. In this paper, we propose an unexplored direction -- the joint optimization of CNNs to provide a compressed model that is adapted to perform well for a given target domain. In particular, the proposed approach performs unsupervised knowledge distillation (KD) from a complex teacher model to a compact student model, by leveraging both source and target data. It also improves upon existing UDA techniques by progressively teaching the student about domain-invariant features, instead of directly adapting a compact model on target domain data. Our method is compared against state-of-the-art compression and UDA techniques, using two popular classification datasets for UDA -- Office31 and ImageClef-DA. In both datasets, results indicate that our method can achieve the highest level of accuracy while requiring a comparable or lower time complexity.
Semantic segmentation with dense pixel-wise annotation has achieved excellent performance thanks to deep learning. However, the generalization of semantic segmentation in the wild remains challenging. In this paper, we address the problem of unsuperv ised domain adaptation (UDA) in semantic segmentation. Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains by leveraging co-occurring patterns between pairwise pixels in the output of structured semantic segmentation. This is different from most existing approaches that attempt to adapt domains based on individual pixel-wise information in image, feature, or output level. Specifically, we perform domain adaptation on the affinity relationship between adjacent pixels termed affinity space of source and target domain. To this end, we develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment. Extensive experiments demonstrate that the proposed method achieves superior performance against some state-of-the-art methods on several challenging benchmarks for semantic segmentation across domains. The code is available at https://github.com/idealwei/ASANet.
Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose kn owledge from a powerful teacher model to a less-parameterized student model. However, existing pose distillation works rely on a heavy pre-trained estimator to perform knowledge transfer and require a complex two-stage learning procedure. In this work, we investigate a novel Online Knowledge Distillation framework by distilling Human Pose structure knowledge in a one-stage manner to guarantee the distillation efficiency, termed OKDHP. Specifically, OKDHP trains a single multi-branch network and acquires the predicted heatmaps from each, which are then assembled by a Feature Aggregation Unit (FAU) as the target heatmaps to teach each branch in reverse. Instead of simply averaging the heatmaps, FAU which consists of multiple parallel transformations with different receptive fields, leverages the multi-scale information, thus obtains target heatmaps with higher-quality. Specifically, the pixel-wise Kullback-Leibler (KL) divergence is utilized to minimize the discrepancy between the target heatmaps and the predicted ones, which enables the student network to learn the implicit keypoint relationship. Besides, an unbalanced OKDHP scheme is introduced to customize the student networks with different compression rates. The effectiveness of our approach is demonstrated by extensive experiments on two common benchmark datasets, MPII and COCO.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا