ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic electrochemical etching of various metal tips for tunneling spectroscopy and scanning probe microscopy

102   0   0.0 ( 0 )
 نشر من قبل Jian Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hard point-contact spectroscopy and scanning probe microscopy/spectroscopy are powerful techniques for investigating materials with strong expandability. To support these studies, tips with various physical and chemical properties are required. To ensure the reproducibility of experimental results, the fabrication of tips should be standardized, and a controllable and convenient system should be set up. Here a systematic methodology to fabricate various tips is proposed, involving electrochemical etching reactions. The reaction parameters fall into four categories: solution, power supply, immersion depth, and interruption. An etching system was designed and built so that these parameters could be accurately controlled. With this system, etching parameters for copper, silver, gold, platinum/iridium alloy, tungsten, lead, niobium, iron, nickel, cobalt, and permalloy were explored and standardized. Among these tips, silver and niobiums new recipes were explored and standardized. Optical and scanning electron microscopies were performed to characterize the sharp needles. Relevant point-contact experiments were carried out with an etched silver tip to confirm the suitability of the fabricated tips.



قيم البحث

اقرأ أيضاً

A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show ato mic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations.
The graphene moire structures on metals, as they demonstrate both long (moire) and short (atomic) scale ordered structures, are the ideal systems for the application of scanning probe methods. Here we present the complex studies of the graphene/Ir(11 1) system by means of 3D scanning tunnelling and atomic force microscopy/spectroscopy as well as Kelvin-probe force microscopy. All results clearly demonstrate a variation of the moire and atomic scale contrasts as a function of the bias voltage as well as the distance between the scanning probe and the sample, allowing to discriminate between topographic and electronic contributions in the imaging of a graphene layer on metals. The presented results are accompanied by the state-of-the-art density functional theory calculations demonstrating the excellent agreement between theoretical and experimental data.
Spin-polarized scanning tunneling microscopy (SP-STM) measures tunnel magnetoresistance (TMR) with atomic resolution. While various methods for achieving SP probes have been developed, each is limited with respect to fabrication, performance, and all owed operating conditions. In this study, we present the fabrication and use of SP-STM tips made from commercially available antiferromagnetic $rm{Mn_{88}Ni_{12}}$ foil. The tips are intrinsically SP, which is attractive for exploring magnetic phenomena in the zero field limit. The tip material is relatively ductile and straightforward to etch. We benchmark the conventional STM and spectroscopic performance of our tips and demonstrate their spin sensitivity by measuring the two-state switching of holmium single atom magnets on MgO/Ag(100).
We present Scanning Tunneling Spectroscopy measurements at 0.1 K using tips made of Al. At zero field, the atomic lattice and charge density wave of 2HNbSe2 are observed, and under magnetic fields the peculiar electronic surface properties of vortice s are precisely resolved. The tip density of states is influenced by the local magnetic field of the vortex, providing for a new probe of the magnetic field at nanometric sizes.
Exotic quantum phenomena have been demonstrated in recently discovered intrinsic magnetic topological insulator MnBi2Te4. At its two-dimensional limit, quantum anomalous Hall (QAH) effect and axion insulator state are observed in odd and even layers of MnBi2Te4, respectively. The measured band structures exhibit intriguing and complex properties. Here we employ low-temperature scanning tunneling microscopy to study its surface states and magnetic response. The quasiparticle interference patterns indicate that the electronic structures on the topmost layer of MnBi2Te4 is different from that of the expected out-of-plane A-type antiferromagnetic phase. The topological surface states may be embedded in deeper layers beneath the topmost surface. Such novel electronic structure presumably related to the modification of crystalline structure during sample cleaving and re-orientation of magnetic moment of Mn atoms near the surface. Mn dopants substituted at the Bi site on the second atomic layer are observed. The ratio of Mn/Bi substitutions is 5%. The electronic structures are fluctuating at atomic scale on the surface, which can affect the magnetism of MnBi2Te4. Our findings shed new lights on the magnetic property of MnBi2Te4 and thus the design of magnetic topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا