ترغب بنشر مسار تعليمي؟ اضغط هنا

LaneRCNN: Distributed Representations for Graph-Centric Motion Forecasting

111   0   0.0 ( 0 )
 نشر من قبل Wenyuan Zeng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Forecasting the future behaviors of dynamic actors is an important task in many robotics applications such as self-driving. It is extremely challenging as actors have latent intentions and their trajectories are governed by complex interactions between the other actors, themselves, and the maps. In this paper, we propose LaneRCNN, a graph-centric motion forecasting model. Importantly, relying on a specially designed graph encoder, we learn a local lane graph representation per actor (LaneRoI) to encode its past motions and the local map topology. We further develop an interaction module which permits efficient message passing among local graph representations within a shared global lane graph. Moreover, we parameterize the output trajectories based on lane graphs, a more amenable prediction parameterization. Our LaneRCNN captures the actor-to-actor and the actor-to-map relations in a distributed and map-aware manner. We demonstrate the effectiveness of our approach on the large-scale Argoverse Motion Forecasting Benchmark. We achieve the 1st place on the leaderboard and significantly outperform previous best results.



قيم البحث

اقرأ أيضاً

Tracking of objects in 3D is a fundamental task in computer vision that finds use in a wide range of applications such as autonomous driving, robotics or augmented reality. Most recent approaches for 3D multi object tracking (MOT) from LIDAR use obje ct dynamics together with a set of handcrafted features to match detections of objects. However, manually designing such features and heuristics is cumbersome and often leads to suboptimal performance. In this work, we instead strive towards a unified and learning based approach to the 3D MOT problem. We design a graph structure to jointly process detection and track states in an online manner. To this end, we employ a Neural Message Passing network for data association that is fully trainable. Our approach provides a natural way for track initialization and handling of false positive detections, while significantly improving track stability. We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
In this paper, we propose GOHOME, a method leveraging graph representations of the High Definition Map and sparse projections to generate a heatmap output representing the future position probability distribution for a given agent in a traffic scene. This heatmap output yields an unconstrained 2D grid representation of agent future possible locations, allowing inherent multimodality and a measure of the uncertainty of the prediction. Our graph-oriented model avoids the high computation burden of representing the surrounding context as squared images and processing it with classical CNNs, but focuses instead only on the most probable lanes where the agent could end up in the immediate future. GOHOME reaches 3$rd$ on Argoverse Motion Forecasting Benchmark on the MissRate$_6$ metric while achieving significant speed-up and memory burden diminution compared to 1$^{st}$ place method HOME. We also highlight that heatmap output enables multimodal ensembling and improve 1$^{st}$ place MissRate$_6$ by more than 15$%$ with our best ensemble.
This paper focuses on semantic task planning, i.e., predicting a sequence of actions toward accomplishing a specific task under a certain scene, which is a new problem in computer vision research. The primary challenges are how to model task-specific knowledge and how to integrate this knowledge into the learning procedure. In this work, we propose training a recurrent long short-term memory (LSTM) network to address this problem, i.e., taking a scene image (including pre-located objects) and the specified task as input and recurrently predicting action sequences. However, training such a network generally requires large numbers of annotated samples to cover the semantic space (e.g., diverse action decomposition and ordering). To overcome this issue, we introduce a knowledge and-or graph (AOG) for task description, which hierarchically represents a task as atomic actions. With this AOG representation, we can produce many valid samples (i.e., action sequences according to common sense) by training another auxiliary LSTM network with a small set of annotated samples. Furthermore, these generated samples (i.e., task-oriented action sequences) effectively facilitate training of the model for semantic task planning. In our experiments, we create a new dataset that contains diverse daily tasks and extensively evaluate the effectiveness of our approach.
We present an approach to learn an object-centric forward model, and show that this allows us to plan for sequences of actions to achieve distant desired goals. We propose to model a scene as a collection of objects, each with an explicit spatial loc ation and implicit visual feature, and learn to model the effects of actions using random interaction data. Our model allows capturing the robot-object and object-object interactions, and leads to more sample-efficient and accurate predictions. We show that this learned model can be leveraged to search for action sequences that lead to desired goal configurations, and that in conjunction with a learned correction module, this allows for robust closed loop execution. We present experiments both in simulation and the real world, and show that our approach improves over alternate implicit or pixel-space forward models. Please see our project page (https://judyye.github.io/ocmpc/) for result videos.
We present a simple, fast, and light-weight RNN based framework for forecasting future locations of humans in first person monocular videos. The primary motivation for this work was to design a network which could accurately predict future trajectori es at a very high rate on a CPU. Typical applications of such a system would be a social robot or a visual assistance system for all, as both cannot afford to have high compute power to avoid getting heavier, less power efficient, and costlier. In contrast to many previous methods which rely on multiple type of cues such as camera ego-motion or 2D pose of the human, we show that a carefully designed network model which relies solely on bounding boxes can not only perform better but also predicts trajectories at a very high rate while being quite low in size of approximately 17 MB. Specifically, we demonstrate that having an auto-encoder in the encoding phase of the past information and a regularizing layer in the end boosts the accuracy of predictions with negligible overhead. We experiment with three first person video datasets: CityWalks, FPL and JAAD. Our simple method trained on CityWalks surpasses the prediction accuracy of state-of-the-art method (STED) while being 9.6x faster on a CPU (STED runs on a GPU). We also demonstrate that our model can transfer zero-shot or after just 15% fine-tuning to other similar datasets and perform on par with the state-of-the-art methods on such datasets (FPL and DTP). To the best of our knowledge, we are the first to accurately forecast trajectories at a very high prediction rate of 78 trajectories per second on CPU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا