ﻻ يوجد ملخص باللغة العربية
This work presents a high-accuracy, mesh-free, generalized Stokes theorem-based numerical quadrature scheme for integrating functions over trimmed parametric surfaces and volumes. The algorithm relies on two fundamental steps: (1) We iteratively reduce the dimensionality of integration using the generalized Stokes theorem to line integrals over trimming curves, and (2) we employ numerical antidifferentiation in the generalized Stokes theorem using high-order quadrature rules. The scheme achieves exponential convergence up to trimming curve approximation error and has applications to computation of geometric moments, immersogeometric analysis, conservative field transfer between high-order curvilinear meshes, and initialization of multi-material simulations. We compare the quadrature scheme to commonly-used quadrature schemes in the literature and show that our scheme is much more efficient in terms of number of quadrature points used. We provide an open-source implementation of the scheme in MATLAB as part of QuaHOG, a software package for Quadrature of High-Order Geometries.
Numerical integration is encountered in all fields of numerical analysis and the engineering sciences. By now, various efficient and accurate quadrature rules are known; for instance, Gauss-type quadrature rules. In many applications, however, it mig
In this work we report some results, obtained within the framework of the ERC Project CHANGE, on the impact on the performance of the virtual element method of the shape of the polygonal elements of the underlying mesh. More in detail, after reviewin
In this work we investigate the parallel scalability of the numerical method developed in Guthrey and Rossmanith [The regionally implicit discontinuous Galerkin method: Improving the stability of DG-FEM, SIAM J. Numer. Anal. (2019)]. We develop an im
A randomised trapezoidal quadrature rule is proposed for continuous functions which enjoys less regularity than commonly required. Indeed, we consider functions in some fractional Sobolev space. Various error bounds for this randomised rule are estab
Understanding fundamental kinetic processes is important for many problems, from plasma physics to gas dynamics. A first-principles approach to these problems requires a statistical description via the Boltzmann equation, coupled to appropriate field