ﻻ يوجد ملخص باللغة العربية
Numerical integration is encountered in all fields of numerical analysis and the engineering sciences. By now, various efficient and accurate quadrature rules are known; for instance, Gauss-type quadrature rules. In many applications, however, it might be impractical---if not even impossible---to obtain data to fit known quadrature rules. Often, experimental measurements are performed at equidistant or even scattered points in space or time. In this work, we propose stable high order quadrature rules for experimental data, which can accurately handle general weight functions.
In many applications, it is impractical -- if not even impossible -- to obtain data to fit a known cubature formula (CF). Instead, experimental data is often acquired at equidistant or even scattered locations. In this work, stable (in the sense of n
In this work, we propose and investigate stable high-order collocation-type discretisations of the discontinuous Galerkin method on equidistant and scattered collocation points. We do so by incorporating the concept of discrete least squares into the
Data sites selected from modeling high-dimensional problems often appear scattered in non-paternalistic ways. Except for sporadic-clustering at some spots, they become relatively far apart as the dimension of the ambient space grows. These features d
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive comput
We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes in the general setting of evolution equations that arise as gradient flow for a cost function, possibly with respect to an inner product that depends on the solution, and