ﻻ يوجد ملخص باللغة العربية
Hyperkalemia is a potentially life-threatening condition that can lead to fatal arrhythmias. Early identification of high risk patients can inform clinical care to mitigate the risk. While hyperkalemia is often a complication of acute kidney injury (AKI), it also occurs in the absence of AKI. We developed predictive models to identify intensive care unit (ICU) patients at risk of developing hyperkalemia by using the Medical Information Mart for Intensive Care (MIMIC) and the eICU Collaborative Research Database (eICU-CRD). Our methodology focused on building multiple models, optimizing for interpretability through model selection, and simulating various clinical scenarios. In order to determine if our models perform accurately on patients with and without AKI, we evaluated the following clinical cases: (i) predicting hyperkalemia after AKI within 14 days of ICU admission, (ii) predicting hyperkalemia within 14 days of ICU admission regardless of AKI status, and compared different lead times for (i) and (ii). Both clinical scenarios were modeled using logistic regression (LR), random forest (RF), and XGBoost. Using observations from the first day in the ICU, our models were able to predict hyperkalemia with an AUC of (i) 0.79, 0.81, 0.81 and (ii) 0.81, 0.85, 0.85 for LR, RF, and XGBoost respectively. We found that 4 out of the top 5 features were consistent across the models. AKI stage was significant in the models that included all patients with or without AKI, but not in the models which only included patients with AKI. This suggests that while AKI is important for hyperkalemia, the specific stage of AKI may not be as important. Our findings require further investigation and confirmation.
Datasets are rarely a realistic approximation of the target population. Say, prevalence is misrepresented, image quality is above clinical standards, etc. This mismatch is known as sampling bias. Sampling biases are a major hindrance for machine lear
Recently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new c
Recent years have seen a boom in interest in machine learning systems that can provide a human-understandable rationale for their predictions or decisions. However, exactly what kinds of explanation are truly human-interpretable remains poorly unders
Machine learning models have had discernible achievements in a myriad of applications. However, most of these models are black-boxes, and it is obscure how the decisions are made by them. This makes the models unreliable and untrustworthy. To provide
Adverse drug-drug interactions (DDIs) remain a leading cause of morbidity and mortality. Identifying potential DDIs during the drug design process is critical for patients and society. Although several computational models have been proposed for DDI