ترغب بنشر مسار تعليمي؟ اضغط هنا

Smart City Enabled by 5G/6G Networks: An Intelligent Hybrid Random Access Scheme

344   0   0.0 ( 0 )
 نشر من قبل Huimei Han
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet of Things (IoT) is the enabler for smart city to achieve the envision of the Internet of Everything by intelligently connecting devices without human interventions. The explosive growth of IoT devices makes the amount of business data generated by machine-type communications (MTC) account for a great proportion in all communication services. The fifth-generation (5G) specification for cellular networks defines two types of application scenarios for MTC: One is massive machine type communications (mMTC) requiring massive connections, while the other is ultra-reliable low latency communications (URLLC) requiring high reliability and low latency communications. 6G, as the next generation beyond 5G, will have even stronger scales of mMTC and URLLC. mMTC and URLLC will co-exist in MTC networks for 5G 6G-enabled smart city. To enable massive and reliable LLC access to such heterogeneous MTC networks where mMTC and URLLC co-exist, in this article, we introduce the network architecture of heterogeneous MTC networks, and propose an intelligent hybrid random access scheme for 5G/6G-enabled smart city. Numerical results show that, compared to the benchmark schemes, the proposed scheme significantly improves the successful access probability, and satisfies the diverse quality of services requirements of URLLC and mMTC devices.



قيم البحث

اقرأ أيضاً

In this paper, an LSTM-aided hybrid random access scheme (LSTMH-RA) is proposed to support diverse quality of service (QoS) requirements in 6G machine-type communication (MTC) networks, where massive MTC (mMTC) devices and ultra-reliable low latency communications (URLLC) devices coexist. In the proposed LSTMH-RA scheme, mMTC devices access the network via a timing advance (TA)-aided four-step procedure to meet massive access requirement, while the access procedure of the URLLC devices is completed in two steps coupled with the mMTC devices access procedure to reduce latency. Furthermore, we propose an attention-based LSTM prediction model to predict the number of active URLLC devices, thereby determining the parameters of the multi-user detection algorithm to guarantee the latency and reliability access requirements of URLLC devices. We analyze the successful access probability of the LSTMH-RA scheme. Numerical results show that, compared with the benchmark schemes, the proposed LSTMH-RA scheme can significantly improve the successful access probability, and thus satisfy the diverse QoS requirements of URLLC and mMTC devices.
The ever-increasing demand for intelligent, automated, and connected mobility solutions pushes for the development of an innovative sixth Generation (6G) of cellular networks. A radical transformation on the physical layer of vehicular communications is planned, with a paradigm shift towards beam-based millimeter Waves or sub-Terahertz communications, which require precise beam pointing for guaranteeing the communication link, especially in high mobility. A key design aspect is a fast and proactive Initial Access (IA) algorithm to select the optimal beam to be used. In this work, we investigate alternative IA techniques to fasten the current fifth-generation (5G) standard, targeting an efficient 6G design. First, we discuss cooperative position-based schemes that rely on the position information. Then, motivated by the intuition of a non-uniform distribution of the communication directions due to road topology constraints, we design two Probabilistic Codebook (PCB) techniques of prioritized beams. In the first one, the PCBs are built leveraging past collected traffic information, while in the second one, we use the Hough Transform over the digital map to extract dominant road directions. We also show that the information coming from the angular probability distribution allows designing non-uniform codebook quantization, reducing the degradation of the performances compared to uniform one. Numerical simulation on realistic scenarios shows that PCBs-based beam selection outperforms the 5G standard in terms of the number of IA trials, with a performance comparable to position-based methods, without requiring the signaling of sensitive information.
In the sixth-generation (6G) era, emerging large-scale computing based applications (for example processing enormous amounts of images in real-time in autonomous driving) tend to lead to excessive energy consumption for the end users, whose devices a re usually energy-constrained. In this context, energy-efficiency becomes a critical challenge to be solved for harnessing these promising applications to realize green 6G networks. As a remedy, reconfigurable intelligent surfaces (RIS) have been proposed for improving the energy efficiency by beneficially reconfiguring the wireless propagation environment. In conventional RIS solutions, however, the received signal-to-interference-plus-noise ratio (SINR) sometimes may even become degraded. This is because the signals impinging upon an RIS are typically contaminated by interfering signals which are usually dynamic and unknown. To address this issue, `learning the properties of the surrounding spectral environment is a promising solution, motivating the convergence of artificial intelligence and spectrum sensing, termed here as spectrum learning (SL). Inspired by this, we develop an SL-aided RIS framework for intelligently exploiting the inherent characteristics of the radio frequency (RF) spectrum for green 6G networks. Given the proposed framework, the RIS controller becomes capable of intelligently `{think-and-decide} whether to reflect or not the incident signals. Therefore, the received SINR can be improved by dynamically configuring the binary ON-OFF status of the RIS elements. The energy-efficiency benefits attained are validated with the aid of a specific case study. Finally, we conclude with a list of promising future research directions.
In this paper, the problem of opportunistic spectrum sharing for the next generation of wireless systems empowered by the cloud radio access network (C-RAN) is studied. More precisely, low-priority users employ cooperative spectrum sensing to detect a vacant portion of the spectrum that is not currently used by high-priority users. The design of the scheme is to maximize the overall throughput of the low-priority users while guaranteeing the quality of service of the high-priority users. This objective is attained by optimally adjusting spectrum sensing time with respect to imposed target probabilities of detection and false alarm as well as dynamically allocating and assigning C-RAN resources, i.e., transmit powers, sub-carriers, remote radio heads (RRHs), and base-band units. The presented optimization problem is non-convex and NP-hard that is extremely hard to tackle directly. To solve the problem, a low-complex iterative approach is proposed in which sensing time, user association parameters and transmit powers of RRHs are alternatively assigned and optimized at every step. Numerical results are then provided to demonstrate the necessity of performing sensing time adjustment in such systems as well as balancing the sensing-throughput tradeoff.
This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need for an exhaustive beam search thereby reducing the beam sweep time in IA. A deep neural network (DNN) is trained to learn the complex mapping from the received signal strengths (RSSs) collected with a reduced number of beams to the optimal spatial beam of the receiver (among a larger set of beams). In test time, DeepIA measures RSSs only from a small number of beams and runs the DNN to predict the best beam for IA. We show that DeepIA reduces the IA time by sweeping fewer beams and significantly outperforms the conventional IAs beam prediction accuracy in both line of sight (LoS) and non-line of sight (NLoS) mmWave channel conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا