ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Inference Forgetting

121   0   0.0 ( 0 )
 نشر من قبل Shaopeng Fu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The right to be forgotten has been legislated in many countries but the enforcement in machine learning would cause unbearable costs: companies may need to delete whole models learned from massive resources due to single individual requests. Existing works propose to remove the knowledge learned from the requested data via its influence function which is no longer naturally well-defined in Bayesian inference. This paper proposes a {it Bayesian inference forgetting} (BIF) framework to realize the right to be forgotten in Bayesian inference. In the BIF framework, we develop forgetting algorithms for variational inference and Markov chain Monte Carlo. We show that our algorithms can provably remove the influence of single datums on the learned models. Theoretical analysis demonstrates that our algorithms have guaranteed generalizability. Experiments of Gaussian mixture models on the synthetic dataset and Bayesian neural networks on the real-world data verify the feasibility of our methods. The source code package is available at url{https://github.com/fshp971/BIF}.

قيم البحث

اقرأ أيضاً

69 - Jun Lu 2021
Clustering has become a core technology in machine learning, largely due to its application in the field of unsupervised learning, clustering, classification, and density estimation. A frequentist approach exists to hand clustering based on mixture m odel which is known as the EM algorithm where the parameters of the mixture model are usually estimated into a maximum likelihood estimation framework. Bayesian approach for finite and infinite Gaussian mixture model generates point estimates for all variables as well as associated uncertainty in the form of the whole estimates posterior distribution. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in Bayesian inference for finite and infinite Gaussian mixture model in order to seamlessly introduce their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning this field and given the paucity of scope to present this discussion, e.g., the separated analysis of the generation of Dirichlet samples by stick-breaking and Polyas Urn approaches. We refer the reader to literature in the field of the Dirichlet process mixture model for a much detailed introduction to the related fields. Some excellent examples include (Frigyik et al., 2010; Murphy, 2012; Gelman et al., 2014; Hoff, 2009). This survey is primarily a summary of purpose, significance of important background and techniques for Gaussian mixture model, e.g., Dirichlet prior, Chinese restaurant process, and most importantly the origin and complexity of the methods which shed light on their modern applications. The mathematical prerequisite is a first course in probability. Other than this modest background, the development is self-contained, with rigorous proofs provided throughout.
Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence clas s thereof. However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows to do so, the posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters does not grow exponentially with the number of variables and can be tractably learned by maximising an Evidence Lower Bound (ELBO). In our experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
Catastrophic forgetting remains a severe hindrance to the broad application of artificial neural networks (ANNs), however, it continues to be a poorly understood phenomenon. Despite the extensive amount of work on catastrophic forgetting, we argue th at it is still unclear how exactly the phenomenon should be quantified, and, moreover, to what degree all of the choices we make when designing learning systems affect the amount of catastrophic forgetting. We use various testbeds from the reinforcement learning and supervised learning literature to (1) provide evidence that the choice of which modern gradient-based optimization algorithm is used to train an ANN has a significant impact on the amount of catastrophic forgetting and show that-surprisingly-in many instances classical algorithms such as vanilla SGD experience less catastrophic forgetting than the more modern algorithms such as Adam. We empirically compare four different existing metrics for quantifying catastrophic forgetting and (2) show that the degree to which the learning systems experience catastrophic forgetting is sufficiently sensitive to the metric used that a change from one principled metric to another is enough to change the conclusions of a study dramatically. Our results suggest that a much more rigorous experimental methodology is required when looking at catastrophic forgetting. Based on our results, we recommend inter-task forgetting in supervised learning must be measured with both retention and relearning metrics concurrently, and intra-task forgetting in reinforcement learning must-at the very least-be measured with pairwise interference.
Continual learning (CL) is a setting in which an agent has to learn from an incoming stream of data during its entire lifetime. Although major advances have been made in the field, one recurring problem which remains unsolved is that of Catastrophic Forgetting (CF). While the issue has been extensively studied empirically, little attention has been paid from a theoretical angle. In this paper, we show that the impact of CF increases as two tasks increasingly align. We introduce a measure of task similarity called the NTK overlap matrix which is at the core of CF. We analyze common projected gradient algorithms and demonstrate how they mitigate forgetting. Then, we propose a variant of Orthogonal Gradient Descent (OGD) which leverages structure of the data through Principal Component Analysis (PCA). Experiments support our theoretical findings and show how our method can help reduce CF on classical CL datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا