ترغب بنشر مسار تعليمي؟ اضغط هنا

Diversified Patch-based Style Transfer with Shifted Style Normalization

133   0   0.0 ( 0 )
 نشر من قبل Zhizhong Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Gram-based and patch-based approaches are two important research lines of image style transfer. Recent diversified Gram-based methods have been able to produce multiple and diverse reasonable solutions for the same content and style inputs. However, as another popular research interest, the diversity of patch-based methods remains challenging due to the stereotyped style swapping process based on nearest patch matching. To resolve this dilemma, in this paper, we dive into the core style swapping process of patch-based style transfer and explore possible ways to diversify it. What stands out is an operation called shifted style normalization (SSN), the most effective and efficient way to empower existing patch-based methods to generate diverse results for arbitrary styles. The key insight is to use an important intuition that neural patches with higher activation values could contribute more to diversity. Theoretical analyses and extensive experiments are conducted to demonstrate the effectiveness of our method, and compared with other possible options and state-of-the-art algorithms, it shows remarkable superiority in both diversity and efficiency.

قيم البحث

اقرأ أيضاً

Arbitrary style transfer aims to synthesize a content image with the style of an image to create a third image that has never been seen before. Recent arbitrary style transfer algorithms find it challenging to balance the content structure and the st yle patterns. Moreover, simultaneously maintaining the global and local style patterns is difficult due to the patch-based mechanism. In this paper, we introduce a novel style-attentional network (SANet) that efficiently and flexibly integrates the local style patterns according to the semantic spatial distribution of the content image. A new identity loss function and multi-level feature embeddings enable our SANet and decoder to preserve the content structure as much as possible while enriching the style patterns. Experimental results demonstrate that our algorithm synthesizes stylized images in real-time that are higher in quality than those produced by the state-of-the-art algorithms.
Artistic style transfer aims to transfer the style characteristics of one image onto another image while retaining its content. Existing approaches commonly leverage various normalization techniques, although these face limitations in adequately tran sferring diverse textures to different spatial locations. Self-Attention-based approaches have tackled this issue with partial success but suffer from unwanted artifacts. Motivated by these observations, this paper aims to combine the best of both worlds: self-attention and normalization. That yields a new plug-and-play module that we name Self-Attentive Factorized Instance Normalization (SAFIN). SAFIN is essentially a spatially adaptive normalization module whose parameters are inferred through attention on the content and style image. We demonstrate that plugging SAFIN into the base network of another state-of-the-art method results in enhanced stylization. We also develop a novel base network composed of Wavelet Transform for multi-scale style transfer, which when combined with SAFIN, produces visually appealing results with lesser unwanted textures.
Universal Neural Style Transfer (NST) methods are capable of performing style transfer of arbitrary styles in a style-agnostic manner via feature transforms in (almost) real-time. Even though their unimodal parametric style modeling approach has been proven adequate to transfer a single style from relatively simple images, they are usually not capable of effectively handling more complex styles, producing significant artifacts, as well as reducing the quality of the synthesized textures in the stylized image. To overcome these limitations, in this paper we propose a novel universal NST approach that separately models each sub-style that exists in a given style image (or a collection of style images). This allows for better modeling the subtle style differences within the same style image and then using the most appropriate sub-style (or mixtures of different sub-styles) to stylize the content image. The ability of the proposed approach to a) perform a wide range of different stylizations using the sub-styles that exist in one style image, while giving the ability to the user to appropriate mix the different sub-styles, b) automatically match the most appropriate sub-style to different semantic regions of the content image, improving existing state-of-the-art universal NST approaches, and c) detecting and transferring the sub-styles from collections of images are demonstrated through extensive experiments.
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on an arbitrary style image. In this task the content-style feature transformation is a critical component for a proper fusion of features. Existin g feature transformation algorithms often suffer from unstable learning, loss of content and style details, and non-natural stroke patterns. To mitigate these issues, this paper proposes a parameter-free algorithm, Style Projection, for fast yet effective content-style transformation. To leverage the proposed Style Projection~component, this paper further presents a real-time feed-forward model for arbitrary style transfer, including a regularization for matching the content semantics between inputs and outputs. Extensive experiments have demonstrated the effectiveness and efficiency of the proposed method in terms of qualitative analysis, quantitative evaluation, and user study.
This paper presents ImagineNet, a tool that uses a novel neural style transfer model to enable end-users and app developers to restyle GUIs using an image of their choice. Former neural style transfer techniques are inadequate for this application be cause they produce GUIs that are illegible and hence nonfunctional. We propose a neural solution by adding a new loss term to the original formulation, which minimizes the squared error in the uncentered cross-covariance of features from different levels in a CNN between the style and output images. ImagineNet retains the details of GUIs, while transferring the colors and textures of the art. We presented GUIs restyled with ImagineNet as well as other style transfer techniques to 50 evaluators and all preferred those of ImagineNet. We show how ImagineNet can be used to restyle (1) the graphical assets of an app, (2) an app with user-supplied content, and (3) an app with dynamically generated GUIs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا