ﻻ يوجد ملخص باللغة العربية
Deep learning can promote the mammography-based computer-aided diagnosis (CAD) for breast cancers, but it generally suffers from the small sample size problem. Self-supervised learning (SSL) has shown its effectiveness in medical image analysis with limited training samples. However, the network model sometimes cannot be well pre-trained in the conventional SSL framework due to the limitation of the pretext task and fine-tuning mechanism. In this work, a Task-driven Self-supervised Bi-channel Networks (TSBN) framework is proposed to improve the performance of classification model the mammography-based CAD. In particular, a new gray-scale image mapping (GSIM) is designed as the pretext task, which embeds the class label information of mammograms into the image restoration task to improve discriminative feature representation. The proposed TSBN then innovatively integrates different network architecture, including the image restoration network and the classification network, into a unified SSL framework. It jointly trains the bi-channel network models and collaboratively transfers the knowledge from the pretext task network to the downstream task network with improved diagnostic accuracy. The proposed TSBN is evaluated on a public INbreast mammogram dataset. The experimental results indicate that it outperforms the conventional SSL and multi-task learning algorithms for diagnosis of breast cancers with limited samples.
A supervised diagnosis system for digital mammogram is developed. The diagnosis processes are done by transforming the data of the images into a feature vector using wavelets multilevel decomposition. This vector is used as the feature tailored towar
In the last few years, deep learning classifiers have shown promising results in image-based medical diagnosis. However, interpreting the outputs of these models remains a challenge. In cancer diagnosis, interpretability can be achieved by localizing
Microsatellite instability (MSI) is a tumor phenotype whose diagnosis largely impacts patient care in colorectal cancers (CRC), and is associated with response to immunotherapy in all solid tumors. Deep learning models detecting MSI tumors directly f
Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019 and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based appro