ترغب بنشر مسار تعليمي؟ اضغط هنا

An Adaptive Algorithm based on High-Dimensional Function Approximation to obtain Optimal Designs

314   0   0.0 ( 0 )
 نشر من قبل Philipp Seufert
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Algorithms which compute locally optimal continuous designs often rely on a finite design space or on repeatedly solving a complex non-linear program. Both methods require extensive evaluations of the Jacobian Df of the underlying model. These evaluations present a heavy computational burden. Based on the Kiefer-Wolfowitz Equivalence Theorem we present a novel design of experiments algorithm which computes optimal designs in a continuous design space. For this iterative algorithm we combine an adaptive Bayes-like sampling scheme with Gaussian process regression to approximate the directional derivative of the design criterion. The approximation allows us to adaptively select new design points on which to evaluate the model. The adaptive selection of the algorithm requires significantly less evaluations of Df and reduces the runtime of the computations. We show the viability of the new algorithm on two examples from chemical engineering.



قيم البحث

اقرأ أيضاً

Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modelling assumption for such experiments is that responses from units within a block are dependent. Accounting for such dependencies in both the design of the experiment and the modelling of the resulting data when the response is not normally distributed can be challenging, particularly in terms of the computation required to find an optimal design. The application of copulas and marginal modelling provides a computationally efficient approach for estimating population-average treatment effects. Motivated by an experiment from materials testing, we develop and demonstrate designs with blocks of size two using copula models. Such designs are also important in applications ranging from microarray experiments to experiments on human eyes or limbs with naturally occurring blocks of size two. We present methodology for design selection, make comparisons to existing approaches in the literature and assess the robustness of the designs to modelling assumptions.
We propose a method for constructing optimal block designs for experiments on networks. The response model for a given network interference structure extends the linear network effects model to incorporate blocks. The optimality criteria are chosen t o reflect the experimental objectives and an exchange algorithm is used to search across the design space for obtaining an efficient design when an exhaustive search is not possible. Our interest lies in estimating the direct comparisons among treatments, in the presence of nuisance network effects that stem from the underlying network interference structure governing the experimental units, or in the network effects themselves. Comparisons of optimal designs under different models, including the standard treatment models, are examined by comparing the variance and bias of treatment effect estimators. We also suggest a way of defining blocks, while taking into account the interrelations of groups of experimental units within a network, using spectral clustering techniques to achieve optimal modularity. We expect connected units within closed-form communities to behave similarly to an external stimulus. We provide evidence that our approach can lead to efficiency gains over conventional designs such as randomized designs that ignore the network structure and we illustrate its usefulness for experiments on networks.
The robust adaptive beamforming design problem based on estimation of the signal of interest steering vector is considered in the paper. In this case, the optimal beamformer is obtained by computing the sample matrix inverse and an optimal estimate o f the signal of interest steering vector. The common criteria to find the best estimate of the steering vector are the beamformer output SINR and output power, while the constraints assume as little as possible prior inaccurate knowledge about the signal of interest, the propagation media, and the antenna array. Herein, a new beamformer output power maximization problem is formulated and solved subject to a double-sided norm perturbation constraint, a similarity constraint, and a quadratic constraint that guarantees that the direction-of-arrival (DOA) of the signal of interest is away from the DOA region of all linear combinations of the interference steering vectors. In the new robust design, the prior information required consists of some allowable error norm bounds, the approximate knowledge of the antenna array geometry, and the angular sector of the signal of interest. It turns out that the array output power maximization problem is a non-convex QCQP problem with inhomogeneous constraints. However, we show that the problem is still solvable, and develop efficient algorithms for finding globally optimal estimate of the signal of interest steering vector. The results are generalized to the case where an ellipsoidal constraint is considered, and sufficient conditions for the global optimality are derived. In addition, a new quadratic constraint on the actual signal steering vector is proposed in order to improve the array performance. To validate our results, simulation examples are presented, and they demonstrate the improved performance of the new robust beamformers in terms of the output SINR as well as the output power.
This paper develops a novel spatial quantile function-on-scalar regression model, which studies the conditional spatial distribution of a high-dimensional functional response given scalar predictors. With the strength of both quantile regression and copula modeling, we are able to explicitly characterize the conditional distribution of the functional or image response on the whole spatial domain. Our method provides a comprehensive understanding of the effect of scalar covariates on functional responses across different quantile levels and also gives a practical way to generate new images for given covariate values. Theoretically, we establish the minimax rates of convergence for estimating coefficient functions under both fixed and random designs. We further develop an efficient primal-dual algorithm to handle high-dimensional image data. Simulations and real data analysis are conducted to examine the finite-sample performance.
We develop a fully Bayesian framework for function-on-scalars regression with many predictors. The functional data response is modeled nonparametrically using unknown basis functions, which produces a flexible and data-adaptive functional basis. We i ncorporate shrinkage priors that effectively remove unimportant scalar covariates from the model and reduce sensitivity to the number of (unknown) basis functions. For variable selection in functional regression, we propose a decision theoretic posterior summarization technique, which identifies a subset of covariates that retains nearly the predictive accuracy of the full model. Our approach is broadly applicable for Bayesian functional regression models, and unlike existing methods provides joint rather than marginal selection of important predictor variables. Computationally scalable posterior inference is achieved using a Gibbs sampler with linear time complexity in the number of predictors. The resulting algorithm is empirically faster than existing frequentist and Bayesian techniques, and provides joint estimation of model parameters, prediction and imputation of functional trajectories, and uncertainty quantification via the posterior distribution. A simulation study demonstrates improvements in estimation accuracy, uncertainty quantification, and variable selection relative to existing alternatives. The methodology is applied to actigraphy data to investigate the association between intraday physical activity and responses to a sleep questionnaire.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا