ﻻ يوجد ملخص باللغة العربية
We develop a fully Bayesian framework for function-on-scalars regression with many predictors. The functional data response is modeled nonparametrically using unknown basis functions, which produces a flexible and data-adaptive functional basis. We incorporate shrinkage priors that effectively remove unimportant scalar covariates from the model and reduce sensitivity to the number of (unknown) basis functions. For variable selection in functional regression, we propose a decision theoretic posterior summarization technique, which identifies a subset of covariates that retains nearly the predictive accuracy of the full model. Our approach is broadly applicable for Bayesian functional regression models, and unlike existing methods provides joint rather than marginal selection of important predictor variables. Computationally scalable posterior inference is achieved using a Gibbs sampler with linear time complexity in the number of predictors. The resulting algorithm is empirically faster than existing frequentist and Bayesian techniques, and provides joint estimation of model parameters, prediction and imputation of functional trajectories, and uncertainty quantification via the posterior distribution. A simulation study demonstrates improvements in estimation accuracy, uncertainty quantification, and variable selection relative to existing alternatives. The methodology is applied to actigraphy data to investigate the association between intraday physical activity and responses to a sleep questionnaire.
This paper develops a novel spatial quantile function-on-scalar regression model, which studies the conditional spatial distribution of a high-dimensional functional response given scalar predictors. With the strength of both quantile regression and
It has become increasingly common to collect high-dimensional binary data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algo
We study high-dimensional Bayesian linear regression with a general beta prime distribution for the scale parameter. Under the assumption of sparsity, we show that appropriate selection of the hyperparameters in the beta prime prior leads to the (nea
Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high-dimensional covariates primarily focuses on ex
We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a