ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximations with deep neural networks in Sobolev time-space

107   0   0.0 ( 0 )
 نشر من قبل Ahmed Abdeljawad
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solutions of evolution equation generally lies in certain Bochner-Sobolev spaces, in which the solution may has regularity and integrability properties for the time variable that can be different for the space variables. Therefore, in this paper, we develop a framework shows that deep neural networks can approximate Sobolev-regular functions with respect to Bochner-Sobolev spaces. In our work we use the so-called Rectified Cubic Unit (ReCU) as an activation function in our networks, which allows us to deduce approximation results of the neural networks while avoiding issues caused by the non regularity of the most commonly used Rectivied Linear Unit (ReLU) activation function.



قيم البحث

اقرأ أيضاً

At the heart of deep learning we aim to use neural networks as function approximators - training them to produce outputs from inputs in emulation of a ground truth function or data creation process. In many cases we only have access to input-output p airs from the ground truth, however it is becoming more common to have access to derivatives of the target output with respect to the input - for example when the ground truth function is itself a neural network such as in network compression or distillation. Generally these target derivatives are not computed, or are ignored. This paper introduces Sobolev Training for neural networks, which is a method for incorporating these target derivatives in addition the to target values while training. By optimising neural networks to not only approximate the functions outputs but also the functions derivatives we encode additional information about the target function within the parameters of the neural network. Thereby we can improve the quality of our predictors, as well as the data-efficiency and generalization capabilities of our learned function approximation. We provide theoretical justifications for such an approach as well as examples of empirical evidence on three distinct domains: regression on classical optimisation datasets, distilling policies of an agent playing Atari, and on large-scale applications of synthetic gradients. In all three domains the use of Sobolev Training, employing target derivatives in addition to target values, results in models with higher accuracy and stronger generalisation.
Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists in training composite architectures in an end-to-end fashion, where in puts are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more details, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: i) Reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, ii) Designing efficient embeddings for classification is achieved by targeting specific geometries, and iii) Robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.
161 - Sean Hon , Haizhao Yang 2021
We establish in this work approximation results of deep neural networks for smooth functions measured in Sobolev norms, motivated by recent development of numerical solvers for partial differential equations using deep neural networks. The error boun ds are explicitly characterized in terms of both the width and depth of the networks simultaneously. Namely, for $fin C^s([0,1]^d)$, we show that deep ReLU networks of width $mathcal{O}(Nlog{N})$ and of depth $mathcal{O}(Llog{L})$ can achieve a non-asymptotic approximation rate of $mathcal{O}(N^{-2(s-1)/d}L^{-2(s-1)/d})$ with respect to the $mathcal{W}^{1,p}([0,1]^d)$ norm for $pin[1,infty)$. If either the ReLU function or its square is applied as activation functions to construct deep neural networks of width $mathcal{O}(Nlog{N})$ and of depth $mathcal{O}(Llog{L})$ to approximate $fin C^s([0,1]^d)$, the non-asymptotic approximation rate is $mathcal{O}(N^{-2(s-n)/d}L^{-2(s-n)/d})$ with respect to the $mathcal{W}^{n,p}([0,1]^d)$ norm for $pin[1,infty)$.
107 - Florian Stelzer 2021
The method recently introduced in arXiv:2011.10115 realizes a deep neural network with just a single nonlinear element and delayed feedback. It is applicable for the description of physically implemented neural networks. In this work, we present an i nfinite-dimensional generalization, which allows for a more rigorous mathematical analysis and a higher flexibility in choosing the weight functions. Precisely speaking, the weights are described by Lebesgue integrable functions instead of step functions. We also provide a functional back-propagation algorithm, which enables gradient descent training of the weights. In addition, with a slight modification, our concept realizes recurrent neural networks.
Recent advances in deep learning have made available large, powerful convolutional neural networks (CNN) with state-of-the-art performance in several real-world applications. Unfortunately, these large-sized models have millions of parameters, thus t hey are not deployable on resource-limited platforms (e.g. where RAM is limited). Compression of CNNs thereby becomes a critical problem to achieve memory-efficient and possibly computationally faster model representations. In this paper, we investigate the impact of lossy compression of CNNs by weight pruning and quantization, and lossless weight matrix representations based on source coding. We tested several combinations of these techniques on four benchmark datasets for classification and regression problems, achieving compression rates up to $165$ times, while preserving or improving the model performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا