ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio investigations of point and complex defect structures in B2-FeAl

101   0   0.0 ( 0 )
 نشر من قبل Halil \\.Ibrahim S\\\"ozen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we have studied the defect structure and corresponding defect concentration investigations through the theoretical, experimental and computational works on B2-type Fe-Al alloys. We have used ab initio framework in order to investigate the defect structure. To have a proper explanation for high defect concentration in B2-FeAl, we did not confine with point defect, but extend the work on defect complexes. The possible defect formation energies were calculated with the dependence of chemical potential and carefully investigated against supercell size and the effect of magnetism. The calculations revealed that the double Fe antisite at Fe rich condition, the single Fe vacancy at intermediate region (i.e in the stoichiometry) and the double Al antisite is the dominant defect close to Al rich condition, where mainly Al rich region was unstable. From the obtained defect formation energies, defect concentrations were calculated at different temperatures with respect to Al concentration for B2-FeAl. It has been found that increasing Al content and temperature gradually leads to increase in the vacancy content. It has also seen that the dominant defect for all temperature ranges was the single Fe vacancy at the exact stoichiometry and the highest single Fe vacancy content detected with 1.6 % at 1450 K.

قيم البحث

اقرأ أيضاً

Resonant photoemission spectroscopy has been used to investigate the character of Fe 3d states in FeAl alloy. Fe 3d states have two different character, first is of itinerant nature located very close to the Fermi level, and second, is of less itiner ant (relatively localized character), located beyond 2 eV below the Fermi level. These distinct states are clearly distinguishable in the resonant photoemission data. Comparison between the results obtained from experiments and first principle based electronic structure calculation show that the origin of the itinerant character of the Fe 3d states is due to the ordered B2 structure, whereas the relatively less itinerant (localized) Fe 3d states are from the disorders present in the sample. The exchange splitting of the Fe 3s core level peak confirms the presence of local moment in this system. It is found that the itinerant electrons arise due to the hybridization between Fe 3d and Al 3s-3p states. Presence of hybridization is observed as a shift in the Al 2p core-level spectra as well as in the X-ray near edge absorption spectra towards lower binding energy. Our photoemission results are thus explained by the co-existence of ordered and disordered phases in the system.
Ab initio molecular dynamics simulations using VASP was employed to calculate threshold displacement energies and defect formation energies of Y4Zr3O12 {delta}-phase, which is the most commonly found phase in newly developed Zr and Al-containing ODS steels. The Threshold displacement energy (Ed) values are determined to be 28 eV for Zr3a primary knock-on atom along [111] direction, 40 eV for Zr18f atoms along [111] direction and 50 eV for Y recoils along [110] direction. Minimum Ed values for O and O atoms are 13 eV and 16 eV respectively. The displacement energies of anions are much smaller compared to cations, thus suggesting that anion disorder is more probable than cation disorder. All directions except the direction in which inherent structural vacancies are aligned, cations tend to occupy another cation site. The threshold displacement energies are larger than that of Y2Ti2O7, the conventional precipitates in Ti containing ODS steels. Due to the partial occupancy of Y and Zr in the 18f position, the antisite formation energy is negligibly small, and it may help the structure to withstand more disorder upon irradiation. These results convey that Zr/Al ODS alloys, which have better corrosion resistance properties compared to the conventional Ti-ODS alloys, may also possess superior radiation resistance.
64 - S.K. Dey , C.C. Dey , S. Saha 2017
Crystalline phases formed in stoichiometric Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have been studied by perturbed angular correlation (PAC) spectroscopy, XRD and TEM/SAED measurements. In Zr$_9$Ni$_{11}$, the phases Zr$_9$Ni$_{11}$ ($sim$89%) and Zr$_8$ Ni$_{21}$ ($sim$11%) have been found at room temperature from PAC measurements. At 773 K, Zr$_9$Ni$_{11}$ partially decomposes to Zr$_7$Ni$_{10}$ and at 973 K, it is completely decomposed to ZrNi and Zr$_7$Ni$_{10}$. In Hf$_9$Ni$_{11}$, a predominant phase ($sim$81%) due to HfNi is found at room temperature while the phase Hf$_9$Ni$_{11}$ is produced as a minor phase ($sim$19%). No compositional phase change at higher temperature is found in Hf$_9$Ni$_{11}$. Phase components found from XRD and TEM/SAED measurements are similar to those observed from PAC measurements. Electric field gradients in Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have been calculated by density functional theory (DFT) using all electron full potential (linearized) augmented plane wave plus local orbitals [FP-(L)APW+lo] method in order to assign the phase components.
We present a scheme for the improved description of the long-range interatomic force constants in a more accurate way than the procedure which is commonly used within plane-wave based density-functional perturbation-theory calculations. Our scheme is based on the inclusion of a q point grid which is denser in a restricted area around the center of the Brillouin Zone than in the remaining parts, even though the method is not limited to an area around Gamma. We have tested the validity of our procedure in the case of high-pressure phases of bulk silicon considering the bct and sh structure.
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its enhanced stability at the lithium/polymer interface of high conductivity polymer batteries. Experimental studies have shown that, depending on the preparation conditi ons, both the PEO3:LiCF3SO3 crystalline complex and the PEO3:LiCF3SO3 amorphous phase can be formed. However, previous theoretical investigations focused on the short chain amorphous PEO3:LiCF3SO3 system. We report ab initio density-functional-theory calculations of crystalline PEO3:LiCF3SO3. The calculated results about the bonding configuration, electronic structures, and conductivity properties are in good agreement with the experimental measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا