ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable commutator length on big mapping class groups

171   0   0.0 ( 0 )
 نشر من قبل Alexander Rasmussen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study stable commutator length on mapping class groups of certain infinite-type surfaces. In particular, we show that stable commutator length defines a continuous function on the commutator subgroups of such infinite-type mapping class groups. We furthermore show that the commutator subgroups are open and closed subgroups and that the abelianizations are finitely generated in many cases. Our results apply to many popular infinite-type surfaces with locally coarsely bounded mapping class groups.



قيم البحث

اقرأ أيضاً

We give a new upper bound on the stable commutator length of Dehn twists in hyperelliptic mapping class groups, and determine the stable commutator length of some elements. We also calculate values and the defects of homogeneous quasimorphisms derive d from omega-signatures, and show that they are linearly independent in the mapping class groups of pointed 2-spheres when the number of points is small.
Let $Gamma$ be a finite index subgroup of the mapping class group $MCG(Sigma)$ of a closed orientable surface $Sigma$, possibly with punctures. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element $ginGamma$ ha s positive stable commutator length. In addition, we show that in these situations the stable commutator length, if nonzero, is uniformly bounded away from 0. The method works for certain subgroups of infinite index as well and we show $scl$ is uniformly positive on the nontrivial elements of the Torelli group. The proofs use our earlier construction in the paper Constructing group actions on quasi-trees and applications to mapping class groups of group actions on quasi-trees.
We study the action of (big) mapping class groups on the first homology of the corresponding surface. We give a precise characterization of the image of the induced homology representation.
238 - Alden Walker 2013
We give an algorithm to compute stable commutator length in free products of cyclic groups which is polynomial time in the length of the input, the number of factors, and the orders of the finite factors. We also describe some experimental and theoretical applications of this algorithm.
We give a new proof of a theorem of D. Calegari that says that the Cayley graph of a surface group with respect to any generating set lying in finitely many mapping class group orbits has infinite diameter. This applies, for instance, to the generating set consisting of all simple closed curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا