ﻻ يوجد ملخص باللغة العربية
Traveling wave parametric amplification in a nonlinear medium provides broadband quantum-noise limited gain and is a remarkable resource for the detection of electromagnetic radiation. This nonlinearity is at the same time the key to the amplification phenomenon but also the cause of a fundamental limitation: poor phase matching between the signal and the pump. Here we solve this issue with a new phase matching mechanism based on the sign reversal of the Kerr nonlinearity. We present a novel traveling wave parametric amplifier composed of a chain of superconducting nonlinear asymmetric inductive elements (SNAILs) which allows this sign reversal when biased with the proper magnetic flux. Compared to previous state of the art phase matching approaches, this reversed Kerr phase matching mechanism avoids the presence of gaps in transmission, reduces gain ripples, and allows in situ tunability of the amplification band over an unprecedented wide range. Besides such notable advancements in the amplification performance, with direct applications to superconducting quantum computing, the in-situ tunability of the nonlinearity in traveling wave structures, with no counterpart in optics to the best of our knowledge, opens exciting experimental possibilities in the general framework of microwave quantum optics and single-photon detection.
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance while allowing for signific
Degenerate parametric amplifiers (DPAs) exhibit the unique property of phase-sensitive gain and can be used to noiselessly amplify small signals or squeeze field fluctuations beneath the vacuum level. In the microwave domain, these amplifiers have be
Broadband quantum-limited amplifiers would advance applications in quantum information processing, metrology, and astronomy. However, conventional traveling-wave parametric amplifiers (TWPAs) support broadband amplification at the cost of increased a
We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot-noise tunnel junction (SNTJ), approaches the quantum limit. Biased with a d
We study theoretically how loss impacts the amplification and squeezing performance of a generic quantum travelling wave parametric amplifier. Unlike previous studies, we analyze how having different levels of loss at signal and idler frequencies can