ﻻ يوجد ملخص باللغة العربية
In this article, we discuss the vertex decomposability of three well-studied simplicial complexes associated to forests. In particular, we show that the bounded degree complex of a forest and the complex of directed trees of a multidiforest are vertex decomposable. We then prove that the non-cover complex of a forest is either contractible or homotopy equivalent to a sphere. Finally, we provide a complete characterization of forests whose non-cover complexes are vertex decomposable.
We say that a pure $d$-dimensional simplicial complex $Delta$ on $n$ vertices is shelling completable if $Delta$ can be realized as the initial sequence of some shelling of $Delta_{n-1}^{(d)}$, the $d$-skeleton of the $(n-1)$-dimensional simplex. A w
A well-known conjecture of Richard Stanley posits that the $h$-vector of the independence complex of a matroid is a pure ${mathcal O}$-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph
Given a simple undirected graph $G$ there is a simplicial complex $mathrm{Ind}(G)$, called the independence complex, whose faces correspond to the independent sets of $G$. This is a well studied concept because it provides a fertile ground for intera
A new 2-parameter family of central structures in trees, called central forests, is introduced. Miniekas $m$-center problem and McMorriss and Reids central-$k$-tree can be seen as special cases of central forests in trees. A central forest is defined
The study of patterns in permutations associated with forests of binary shrubs was initiated by D. Bevan et al.. In this paper, we study five different types of rise statistics that can be associated with such permutations and find the generating fun