ترغب بنشر مسار تعليمي؟ اضغط هنا

Central Forests in Trees

107   0   0.0 ( 0 )
 نشر من قبل Shrisha Rao
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new 2-parameter family of central structures in trees, called central forests, is introduced. Miniekas $m$-center problem and McMorriss and Reids central-$k$-tree can be seen as special cases of central forests in trees. A central forest is defined as a forest $F$ of $m$ subtrees of a tree $T$, where each subtree has $k$ nodes, which minimizes the maximum distance between nodes not in $F$ and those in $F$. An $O(n(m+k))$ algorithm to construct such a central forest in trees is presented, where $n$ is the number of nodes in the tree. The algorithm either returns with a central forest, or with the largest $k$ for which a central forest of $m$ subtrees is possible. Some of the elementary properties of central forests are also studied.



قيم البحث

اقرأ أيضاً

While the game chromatic number of a forest is known to be at most 4, no simple criteria are known for determining the game chromatic number of a forest. We first state necessary and sufficient conditions for forests with game chromatic number 2 and then investigate the differences between forests with game chromatic number 3 and 4. In doing so, we present a minimal example of a forest with game chromatic number 4, criteria for determining the game chromatic number of a forest without vertices of degree 3, and an example of a forest with maximum degree 3 and game chromatic number 4.
96 - Hemant Ishwaran 2007
We characterize and study variable importance (VIMP) and pairwise variable associations in binary regression trees. A key component involves the node mean squared error for a quantity we refer to as a maximal subtree. The theory naturally extends fro m single trees to ensembles of trees and applies to methods like random forests. This is useful because while importance values from random forests are used to screen variables, for example they are used to filter high throughput genomic data in Bioinformatics, very little theory exists about their properties.
The study of patterns in permutations associated with forests of binary shrubs was initiated by D. Bevan et al.. In this paper, we study five different types of rise statistics that can be associated with such permutations and find the generating fun ctions for the distribution of such rise statistics.
Let $G$ be a graph on $n$ vertices. For $iin {0,1}$ and a connected graph $G$, a spanning forest $F$ of $G$ is called an $i$-perfect forest if every tree in $F$ is an induced subgraph of $G$ and exactly $i$ vertices of $F$ have even degree (including zero). A $i$-perfect forest of $G$ is proper if it has no vertices of degree zero. Scott (2001) showed that every connected graph with even number of vertices contains a (proper) 0-perfect forest. We prove that one can find a 0-perfect forest with minimum number of edges in polynomial time, but it is NP-hard to obtain a 0-perfect forest with maximum number of edges. Moreover, we show that to decide whether $G$ has a 0-perfect forest with at least $|V(G)|/2+k$ edges, where $k$ is the parameter, is W[1]-hard. We also prove that for a prescribed edge $e$ of $G,$ it is NP-hard to obtain a 0-perfect forest containing $e,$ but one can decide if there existsa 0-perfect forest not containing $e$ in polynomial time. It is easy to see that every graph with odd number of vertices has a 1-perfect forest. It is not the case for proper 1-perfect forests. We give a characterization of when a connected graph has a proper 1-perfect forest.
Since their inception in the 1980s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal no des of recursive partitioning. Trees are powerful, yet susceptible to over-fitting. Strategies against overfitting have traditionally relied on pruning greedily grown trees. The Bayesian framework offers an alternative remedy against overfitting through priors. Roughly speaking, a good prior charges smaller trees where overfitting does not occur. While the consistency of random histograms, trees and their ensembles has been studied quite extensively, the theoretical understanding of the Bayesian counterparts has been missing. In this paper, we take a step towards understanding why/when do Bayesian trees and their ensembles not overfit. To address this question, we study the speed at which the posterior concentrates around the true smooth regression function. We propose a spike-and-tree variant of the popular Bayesian CART prior and establish new theoretical results showing that regression trees (and their ensembles) (a) are capable of recovering smooth regression surfaces, achieving optimal rates up to a log factor, (b) can adapt to the unknown level of smoothness and (c) can perform effective dimension reduction when p>n. These results provide a piece of missing theoretical evidence explaining why Bayesian trees (and additive variants thereof) have worked so well in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا